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§ First, see HadISST vs. NOAA ERSST trends in SST (bottom-right figure)

§ Climate feedbacks depend on spatial patterns of SST and sea ice
§ Substantial disagreements across existing SST datasets come from 

different infilling methods applied to unobserved regions
§ We don’t know how satellite-era trends compare to pre-1980 variability 

because of the disagreements across datasets
§ We need to quantify uncertainty in SST and sea-ice patterns 

– And identify where additional data could help constrain past 
variability

§ There is an opportunity to combine obs of ship-based SST, land-based air 
temperature, and sea-level pressure using coupled data assimilation

Motivation Results: Real Reconstruction with Instrumental Obs.
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Reconstruction of ENSO, Walker Circulation, and Southern Annular Mode

SST Trends 1880–1980
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Results: Test Reconstruction of Climate Model
Observation Network

SST Trends 1880–1980

Methods

Case Study: Onset of Major ENSO (July 1877)

Validation vs. True Variability in GFDL CM4

Conclusions & Next Steps

§ Monthly mean SST, 2-m air temperature, 
and sea-level pressure are assimilated 
from HadSST4, CRUTEM5, and HadSLP2 
(1850–2000)

§ Imperfect model “test” reconstructions: 
draw obs from a target climate model 
(GFDL-CM4 shown below) 

– Locations and errors of the “test” obs 
(from the target model) are specified 
to replicate the actual obs

Linear Inverse Model (LIM)

Data Assimilation (DA)

§ Despite similar Nino3.4 values, spatial patterns of SST anomalies vary 
significantly across existing infilled datasets and vs. our reconstruction

§ How does our 
LIM+DA result 
compare to 
existing 
datasets 
during the 
1877/78 
ENSO?

Including HadSST4 and CRUTEM5 
(HadSLP2 not plotted)

§ Walker Circ. uncertain before 
~1920; reconstruction differs 
strongly from NOAA 20th 
Century Reanalysis

§ SAM shows positive long-term 
trend but large uncertainty 
before ~1940

§ Truth is mostly within 
uncertainty range, despite 
sparse obs and unknown 
physics of the target model

§ Based on “test” reconstruction 
of historical GFDL-CM4, a 
skillful monthly reconstruction 
of real variability and trends 
over the instrumental era 
appears possible

§ Large-scale trends captured over much 
of the globe, but some regions of 
sparse observations are uncertain

§ Can uncertainty in North Pacific and 
Southern Ocean be improved?

§ Existing datasets (left) that are currently used as boundary conditions for AGCMs 
(e.g., in AMIP-type simulations) differ from our reconstruction

§ Reconstruction quantifies spatial distribution of uncertainty: could proxies help?

(Walker and SAM defined in box to left)

§ We combine models and observations to produce spatially complete 
monthly SST, 2-m air temp., and sea-level pressure back to 1850

§ LIM+DA method captures large-scale variability and trends, but perhaps 
more importantly, quantifies uncertainty and its spatial fingerprints

§ Results could be used in atmospheric GCMs to investigate uncertainty in 
historical feedbacks and its sources in the Tropics, Southern Ocean, etc.

§ Method could be extended to investigate past variability in the hydrologic 
cycle (P–E)

§ Nino3.4 appears well 
constrained, but teleconnections 
differ vs. other datasets (see 
case study above)

Showing 5-yr running mean (anomaly)
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§ Coupled online data assimilation (DA) with climate models is not feasible, so 
we build linear inverse models (LIMs) to represent climate models

§ LIMs contain linear dynamics (L) and stochastic noise (S), which together 
can reproduce the original statistics of the input climate model

§ We build “cyclostationary” (monthly) LIMs separately for:
– CESM1, CESM2, MRI-ESM2-0, HadCM3, GISS-E2R
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§ LIM produces monthly “prior” forecasts, and the Kalman filter produces the 
“posterior” analysis (accounting for model and observation uncertainty)

§ Forecasts are launched from previous analysis (i.e., this DA framework has 
“memory” of past observations) 

Illustration of LIM + DA Method
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(Hakim et al. 2022)

(Shin et al. 2021; Penland & Sardeshmukh 1995)

§ Reconstruction of sea ice is a work-in-
progress: challenges come from different 
mean states and physics in models vs. 
reality

§ Uncertainties in sea ice (and implications 
for feedbacks) need to be quantified given 
differences in existing gridded datasets 
(see figure at right)

5-yr running 
means


