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Determining modern climate sensitivity, i.e., the global surface warming from doubling prein-

dustrial concentrations of CO2, is an urgent task as it controls how much the planet will warm from

greenhouse-gas emissions. The upper bound on estimates of climate sensitivity has been highly

uncertain for decades, but paleoclimates now provide a strong constraint. In this dissertation, we

combine proxy data from paleoclimate data assimilation with atmospheric general circulation mod-

els to show that the climate sensitivity inferred from paleoclimates is systematically higher than the

climate sensitivity that applies to modern warming from CO2. This di!erence in climate sensitiv-

ity arises because (a) ice sheets, topography, and vegetation changes drive atmospheric stationary

waves that alter the spatial patterns of sea-surface temperature (SST) over distant oceans during

both the cold Last Glacial Maximum and the warm Pliocene; and (b) these paleoclimate SST pat-

terns are associated with amplifying cloud feedbacks that make past climates more sensitive than

the modern climate. Accounting for these di!erences between climates leads to a substantial re-

duction (→1.0→C) in the upper bound on modern climate sensitivity compared to recent community

assessments, such as IPCC AR6 (Forster et al., 2021).

The leading role of spatial patterns of temperature change in determining climate sensitivity also

compels a re-evaluation of the historical climate record (c. 1850–present). Previous studies have

identified major discrepancies in radiative feedbacks due to di!erences in the patterns of sea-surface

temperature across instrumental datasets. These discrepancies result from statistical infilling of the



expansive gaps between sparse SST observations over the global oceans. In this dissertation, we use

coupled data assimilation, which optimally combines observational and dynamical constraints from

all climate fields simultaneously, to reconstruct monthly and globally resolved SST, near-surface

air temperature, sea ice, and sea-level pressure over 1850–2023. The reconstruction provides a

novel and internally consistent perspective on coupled climate variability and recent trends, which

informs investigation of radiative feedbacks in the historical record.

Chapter 1 introduces the research topics addressed in this dissertation. Chapter 2 quantifies

Last Glacial Maximum pattern e!ects and their impacts on modern climate sensitivity. Chapter

3 quantifies Pliocene pattern e!ects and provides stronger constraints on both modern climate

sensitivity and 21st-century warming. Chapter 4 presents a reconstruction of the historical climate

record (1850–2023) using linear inverse models and coupled data assimilation. Chapter 5 reviews

the conclusions of the dissertation.
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Chapter 1

INTRODUCTION

Earth’s response to greenhouse-gas forcing can be characterized by the equilibrium climate

sensitivity (ECS), defined as the global-mean change in near-surface air temperature due to a

doubling of carbon dioxide (2xCO2) from pre-industrial levels (Charney et al., 1979). Earth’s ECS

is di”cult to constrain due to uncertainty in the radiative feedbacks that govern Earth’s energy

balance (Roe and Baker, 2007; Knutti and Hegerl, 2008), but constraining ECS is essential for

projecting future changes not only in surface temperature but also in the myriad climate features

that depend on surface temperature. Progress in constraining ECS has been slow over the past 40

years, and climate models have not converged on a best estimate (Zelinka et al., 2020).

Recent community assessments of feedbacks and ECS have focused on three lines of evidence:

“process understanding” of feedbacks, observed changes over the historical record (1850–present),

and proxy evidence from the paleoclimate record. Sherwood et al. (2020) developed a Bayesian

framework for quantitatively combining these lines of evidence, leading to a substantial narrowing

of uncertainty compared to previous assessments. A primary motivation for this dissertation is con-

straining radiative feedbacks and modern ECS with evidence from paleoclimates and the historical

record, leveraging recent advances in understanding past patterns of sea-surface temperature (SST)

and their connections to radiative feedbacks.

Using paleoclimates to constrain modern-day ECS requires accounting for how climate feedbacks

change across di!erent climate states. The standard assumption is that colder climates are less

sensitive (i.e., have more-negative feedbacks) than warmer states (Sherwood et al., 2020; Forster

et al., 2021; PALAEOSENS Project Members, 2012; Köhler et al., 2015; von der Heydt et al.,

2016; Friedrich et al., 2016; Rohling et al., 2018). However, the simple assumption that feedbacks

change with global-mean temperature does not account for how feedbacks depend on changing

spatial patterns of sea-surface temperature (SST), a phenomenon known as the SST “pattern e!ect”

(Senior and Mitchell, 2000; Armour et al., 2013; Andrews et al., 2015; Zhou et al., 2016; Stevens
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et al., 2016; Ceppi and Gregory, 2017; Andrews and Webb, 2018; Dong et al., 2019; Fueglistaler,

2019).

A robust understanding of the SST pattern e!ect has been developed in the context of recent

warming. Over the past century, SSTs have warmed more in the tropical west Pacific and less

in the east Pacific and Southern Ocean (Dong et al., 2019; Andrews et al., 2018, 2022). SST

changes in tropical regions of deep convection (e.g., the west Pacific) produce strongly negative

(stabilizing) feedbacks, whereas SST changes in regions with reflective low clouds (e.g., the east

Pacific) or sea ice produce relatively positive (destabilizing) feedbacks (Zhou et al., 2016; Dong

et al., 2019; Andrews and Webb, 2018; Fueglistaler, 2019; Ceppi and Gregory, 2017; Zhou et al.,

2017). This historical pattern of SST trends is expected to reverse in the future as the tropical east

Pacific and Southern Ocean eventually warm at higher rates, producing more-positive feedbacks

and a more-sensitive climate (Ceppi and Gregory, 2017; Armour et al., 2016; Dong et al., 2020).

Accounting for pattern e!ects causes the historical record to become a weak constraint on high

values of ECS (Sherwood et al., 2020; Forster et al., 2021; Andrews et al., 2018, 2022), leaving

paleoclimate evidence, especially from the Last Glacial Maximum (LGM), as a leading constraint

on the ECS upper bound (Sherwood et al., 2020).

With the advent of paleoclimate data assimilation (Hakim et al., 2016), spatially complete

reconstructions of SST and sea-ice concentration (SIC) now exist for the leading two paleoclimate

periods used as ECS constraints (Sherwood et al., 2020): the cold LGM (19–23 thousand years ago)

and the Pliocene’s mid-Piacenzian warm period (3.0–3.3 million years ago). Data assimilation (DA)

uses the spatial covariance from climate models to spread information from sparse observations (e.g.,

ocean sediments, ice cores, and pollen records) across the spatially complete estimate of the climate

state. Importantly, uncertainty in the prior and in the observations is propagated to the posterior

state. In this dissertation, we address whether the recent estimates of paleoclimate SST patterns

for the LGM (Tierney et al., 2020; Osman et al., 2021; Amrhein et al., 2018; Annan et al., 2022)

and Pliocene (Tierney et al., 2025b; Annan et al., 2024) lead to stronger or weaker constraints on

modern-day ECS.

While DA has been used to reconstruct paleoclimates, applying DA to the recent historical

record (1850–present) is a research frontier that will be addressed in this dissertation. Recent

studies have emphasized that various historical SST and SIC datasets, which employ a variety
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of statistical infilling methods, have trends that di!er in their spatial patterns and hence their

radiative feedbacks over the historical record (Modak and Mauritsen, 2023; Lewis and Mauritsen,

2021; Andrews et al., 2022, 2018; Fueglistaler and Silvers, 2021; Forster et al., 2021). Di!erences in

the relative pace of warming between the warmest (deep convective) and coldest (subsiding) regions

of the tropics can have a strong impact on cloud feedbacks and climate sensitivity (Fueglistaler, 2019;

Hartmann and Dygert, 2022), hence past patterns of change across the tropics have been highlighted

as a key uncertainty in understanding feedbacks over the historical record (Fueglistaler and Silvers,

2021). Alternatively, uncertainty in the magnitude of variability and change across the Southern

Ocean, especially in Antarctic sea ice (Roach et al., 2020; Edinburgh and Day, 2016), may be

underappreciated: Andrews et al. (2018) found that SST/SIC datasets with substantially di!erent

preindustrial concentrations of Antarctic sea ice produced global-mean net radiative feedbacks that

di!ered by approximately 0.5 W m↑2 K↑1. Other recent studies have highlighted the Southern

Ocean and (its teleconnections to the tropics) as a major influence on global feedbacks and climate

sensitivity (Kang et al., 2023c,a; Hartmann, 2022; Dong et al., 2022a,b). These findings demonstrate

a need for better quantification of the uncertainty in historical feedbacks arising from uncertainty

in patterns of past temperature change.

While there are numerous existing datasets for historical SST (Huang et al., 2017; Hurrell

et al., 2008; Titchner and Rayner, 2014; Cowtan and Way, 2014; Rayner et al., 2003; Hirahara

et al., 2014; Vaccaro et al., 2021) and sea ice (Rayner et al., 2003; Hurrell et al., 2008; Titchner

and Rayner, 2014; Walsh et al., 2017; Brennan and Hakim, 2022), none have used coupled data

assimilation (i.e., updating the atmosphere and ocean simultaneously by accounting for covariance

across components) to incorporate observations of: SST from ships of opportunity (Kennedy et al.,

2019), 2-m air temperature (T) from terrestrial stations (Osborn et al., 2021), and sea-level pressure

(SLP) from marine data (Freeman et al., 2017). We aim to incorporate these SST, SLP, and T

observations in a new, monthly reconstruction of historical SST and SIC, quantifying uncertainty

in radiative feedbacks over the historical record.

This dissertation includes three chapters representing three publications. Of the studies pre-

sented in the following chapters, Chapter 2 is published, Chapter 3 is in review, and Chapter 4

is in re-review. A publication related to the M.S. degree (Cooper et al., 2022) is not included in

the dissertation. Chapter 2 quantifies the pattern e!ect in the LGM and implications for modern
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ECS. Chapter 3 quantifies pattern e!ects for the Pliocene, synthesizes the Pliocene results with the

LGM, and provides stronger constraints on modern climate sensitivity and 21st-century warming.

Chapter 4 reconstructs the historical climate record over 1850–2023, thus providing constraints on

SST and sea ice that will be used to estimate historical feedbacks and pattern e!ects in a separate

study (in preparation).
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Chapter 2

LAST GLACIAL MAXIMUM PATTERN EFFECTS REDUCE CLIMATE
SENSITIVITY ESTIMATES

This work was published as: Cooper, V., K. Armour, G. Hakim, J. Tierney, M. Osman, C.

Proistosescu, Y. Dong, N. Burls, T. Andrews, D. Amrhein, J. Zhu, W. Dong, Y. Ming, and P.

Chmielowiec. (2024). Last Glacial Maximum pattern e!ects reduce climate sensitivity estimates.

Science Advances 10(16), eadk9461. https://doi.org/10.1126/sciadv.adk9461.

2.1 Abstract

Here we show that the Last Glacial Maximum (LGM) provides a stronger constraint on equilibrium

climate sensitivity (ECS)—the global-mean warming from increasing greenhouse-gas concentra-

tions—after temperature patterns are accounted for. Feedbacks governing ECS depend on spatial

patterns of surface temperature (“pattern e!ects”); hence, using the LGM to constrain future

warming requires quantifying how temperature patterns produce di!erent feedbacks during LGM

cooling compared to modern-day warming. Combining data-assimilation LGM reconstructions with

atmospheric models, we show that the climate is more sensitive to LGM forcing because ice sheets

amplify temperature changes in the extratropics, where feedbacks are destabilizing. After account-

ing for LGM pattern e!ects, we find a best estimate (median) for modern-day ECS of 2.4 →C, with

a 66% likely range of 1.7–3.5 →C (1.4–5.0 →C, 5 to 95%), based on LGM evidence alone. Combining

the LGM with other lines of evidence, the combined best estimate becomes 2.9 →C, with a 66%

likely range of 2.4–3.5 →C (2.1–4.1 →C, 5 to 95%), substantially narrowing uncertainty compared to

recent assessments.

2.2 Introduction

Equilibrium climate sensitivity (ECS) is the steady-state response of global-mean near-surface air

temperature to doubling atmospheric CO2 above pre-industrial levels. ECS is a focus of climate

https://doi.org/10.1126/sciadv.adk9461
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policy and projections because it governs Earth’s long-term response to anthropogenic greenhouse

gas changes (Sherwood et al., 2020; Forster et al., 2021). Recently, the World Climate Research

Programme’s 2020 climate sensitivity assessment, hereafter “WCRP20” (Sherwood et al., 2020),

updated the 66% likely range for ECS to 2.6–3.9→C (2.3–4.7→C, 5–95%) with a central estimate of

3.1→C, which informed the likely range of 2.5–4.0→C (2.0–5.0→C, very likely) and central estimate of

3→C in the Intergovernmental Panel on Climate Change Sixth Assessment Report (“IPCC AR6”)

(Forster et al., 2021). This narrowing of uncertainty compared to previous assessments was achieved

by quantitatively combining evidence from process understanding of climate feedbacks, observations

over the historical record (1870–present), and paleoclimate reconstructions of past cold and warm

periods. Of these lines of evidence, paleoclimate data from the Last Glacial Maximum (LGM),

approximately 21,000 years ago, provide a leading constraint on the upper bound of ECS (Sherwood

et al., 2020; Forster et al., 2021; Tierney et al., 2020).

Using paleoclimate data to constrain modern-day ECS requires accounting for how climate

feedbacks change across di!erent climate states (Sherwood et al., 2020; Forster et al., 2021; Manabe

and Bryan, 1985; PALAEOSENS Project Members, 2012; Köhler et al., 2015; von der Heydt et al.,

2016; Friedrich et al., 2016; Rohling et al., 2018). The standard assumption is that colder climates

are less sensitive (i.e., have more-negative feedbacks) than warmer states (Sherwood et al., 2020;

Forster et al., 2021; PALAEOSENS Project Members, 2012; Köhler et al., 2015; von der Heydt

et al., 2016; Friedrich et al., 2016; Rohling et al., 2018). However, the simple assumption that

feedbacks change with global-mean temperature does not account for how feedbacks depend on

changing spatial patterns of sea-surface temperature (SST), a phenomenon known as the SST

“pattern e!ect” (Armour et al., 2013; Zhou et al., 2016; Dong et al., 2019; Andrews and Webb,

2018; Fueglistaler, 2019; Ceppi and Gregory, 2017).

A robust understanding of the SST pattern e!ect has been developed in the context of recent

warming. Over the past century, SSTs have warmed more in the tropical west Pacific and less in

the east Pacific and Southern Ocean (Dong et al., 2019; Andrews et al., 2018, 2022). SST changes

in tropical regions of deep convection (e.g., the west Pacific) produce strongly negative (stabilizing)

feedbacks, whereas SST changes in regions with reflective low clouds (e.g., the east Pacific) or

sea ice produce relatively positive (destabilizing) feedbacks (Zhou et al., 2016; Dong et al., 2019;

Andrews and Webb, 2018; Fueglistaler, 2019; Ceppi and Gregory, 2017; Zhou et al., 2017). This
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transient pattern of SST trends is expected to reverse in the future as the tropical east Pacific

and Southern Ocean eventually warm at higher rates, producing more-positive feedbacks and a

more-sensitive climate at equilibrium (Ceppi and Gregory, 2017; Armour et al., 2016; Dong et al.,

2020). Accounting for this transient pattern e!ect causes the historical record to become a weak

constraint on high values of ECS (Sherwood et al., 2020; Forster et al., 2021; Andrews et al., 2018,

2022; Proistosescu and Huybers, 2017), leaving the LGM as a leading constraint on the ECS upper

bound (Sherwood et al., 2020).

However, pattern e!ects have not been accounted for in LGM evidence for modern-day ECS

(Sherwood et al., 2020; Forster et al., 2021; Tierney et al., 2020; PALAEOSENS Project Members,

2012; Renoult et al., 2023). Importantly, if the spatial pattern of SST change in equilibrium at

the LGM di!ers from the pattern of future warming, then the climate feedbacks governing climate

sensitivity will di!er as well. Continental ice sheets are responsible for approximately half of the

total LGM forcing (Tierney et al., 2020; Zhu and Poulsen, 2021; Braconnot and Kageyama, 2015)

and drive distinct climate responses from changes in topography, albedo, and sea level (Zhu and

Poulsen, 2021; Manabe and Broccoli, 1985; Cook and Held, 1988; Lee et al., 2015; DiNezio et al.,

2018; Roberts et al., 2019; Amaya et al., 2022), suggesting that patterns of SST change at the

LGM may di!er substantially from those in response to a modern-day doubling of CO2. Previous

work acknowledged this possibility (Sherwood et al., 2020; Forster et al., 2021) but did not account

for LGM pattern e!ects because no quantification had yet been made. A key question is: would

accounting for LGM pattern e!ects strengthen or weaken constraints on modern-day ECS?

Here we provide the first quantification of the LGM pattern e!ect and its uncertainty by lever-

aging two recent advances. First, with the advent of paleoclimate data assimilation (Hakim et al.,

2016), spatially complete reconstructions of SST and sea ice now exist for the LGM (Tierney et al.,

2020; Osman et al., 2021; Annan et al., 2022; Amrhein et al., 2018), including estimated uncertain-

ties. Second, recent progress in quantifying pattern e!ects (Andrews et al., 2018, 2022) provides

methods using atmospheric general circulation models (AGCMs) to link SST patterns to climate

feedbacks. These advances present an opportunity to compare SST changes at the LGM with

those expected under anthropogenic CO2 forcing and to quantify resulting di!erences in climate

feedbacks and sensitivity. To assess the robustness of our results, we use five AGCMs (sampling

uncertainty in how feedbacks relate to SST patterns) and four reconstructions (Tierney et al., 2020;
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Osman et al., 2021; Annan et al., 2022; Amrhein et al., 2018) of the LGM (sampling uncertainty

in SST patterns).

2.3 Dependence of modern-day ECS on pattern e!ects

ECS and climate feedbacks are connected through the standard model of global-mean energy bal-

ance:

#N = ω#T +#F, (2.1)

where N is the top-of-atmosphere radiative imbalance; ω is the net climate feedback (negative for

stable climates); T is the near-surface air temperature; and F is the “e!ective” radiative forcing, i.e.,

the change in net downward radiative flux after adjustments to imposed perturbations but excluding

radiative responses to changing surface temperature (Sherwood et al., 2020; Forster et al., 2021).

Di!erences (#) are relative to an equilibrium reference state, e.g., the pre-industrial period.

When the forcing is a CO2-doubling (2↑CO2) of pre-industrial values, and the climate system

reaches equilibrium (#N = 0), the resulting #T is referred to as the ECS:

ECS = ↓#F2↓
ω2↓

, (2.2)

where#F2↓ is the e!ective radiative forcing, and ω2↓ is the net feedback for 2↑CO2. More-negative

values of ω2↓ indicate a less-sensitive climate (lower ECS).

Here we aim to quantify the di!erence in feedbacks (#ω) operating in the modern climate under

2↑CO2 (ω2↓) and at the LGM (ωLGM):

#ω = ω2↓ ↓ ωLGM. (2.3)

Following recent research on pattern e!ects in the historical record (Sherwood et al., 2020;

Andrews et al., 2018, 2022), we estimate ω2↓ and ωLGM using AGCM simulations with SST and

sea-ice concentration (SIC) prescribed as surface boundary conditions. We further evaluate the

contributions to #ω from pattern e!ects and global-mean temperature changes between the LGM

and 2↑CO2.

To infer the modern-day ECS from LGM evidence, Equations (2.2) and (2.3) can be combined

(Sherwood et al., 2020; Andrews et al., 2018) to yield

ECS = ↓ #F2↓
ω↔
LGM +#ω

, (2.4)
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where ω↔
LGM is the estimate of the unadjusted LGM feedback (determined using Eq. (2.1) applied

to that state), which we take from previous assessments (Sherwood et al., 2020; Forster et al.,

2021; Tierney et al., 2020), and #ω is estimated from our AGCM simulations. The value of #ω

depends on spatial patterns of LGM SST and SIC anomalies, for which we use state-of-the-art

reconstructions (Tierney et al., 2020; Osman et al., 2021; Annan et al., 2022; Amrhein et al., 2018)

based on data assimilation.

2.4 Using data-assimilation reconstructions to quantify pattern e!ects

Similar to Bayesian statistics, paleoclimate data assimilation (Hakim et al., 2016) begins with a

“prior” estimate of the climate state from model ensembles. Proxy data provide indirect climate

observations that update the prior, balancing relative error in the prior and the observations. This

results in a “posterior” state estimate, constrained by observations and accounting for uncertainty

in priors and data. Since the posterior is sensitive to priors (Amrhein et al., 2020; Parsons et al.,

2021), proxies, and methods, we sample this uncertainty by using multiple reconstructions.

Figure 2.1 shows the four SST reconstructions (see Materials and Methods) we use to quantify

the LGM pattern e!ect. All four reconstructions have a prominent common feature: amplified

extratropical cooling in both the North Pacific and North Atlantic Oceans. While the LGM recon-

structions di!er in other regions that are important for climate feedbacks, e.g., the tropical Pacific

(Zhou et al., 2016; Dong et al., 2019; Andrews and Webb, 2018; Fueglistaler, 2019; Ceppi and Gre-

gory, 2017) and Southern Ocean (Armour et al., 2016; Rose et al., 2014; Kang and Xie, 2014), their

robust agreement in the northern extratropics proves to be essential for the LGM pattern e!ect.

The zonally consistent maximum near 40→N in SST anomalies at the LGM is in strong contrast

to the near-equilibrium response to modern-day 2↑CO2 (Fig. 2.1F, Fig. 2.S1) as simulated by

climate models in LongRunMIP (Rugenstein et al., 2019) (see Materials and Methods), suggesting

the potential for feedbacks to di!er between LGM and 2↑CO2 climates.

Using data-constrained patterns to quantify how LGM feedbacks compare to feedbacks in

2↑CO2 is an advance over past comparisons (all based on models), which have produced con-

flicting results (Renoult et al., 2023; Zhu and Poulsen, 2021; Crucifix, 2006; Yoshimori et al., 2011;

Stap et al., 2019; Shakun, 2017; Hopcroft and Valdes, 2015) (see Text S1). While our method

overcomes the problem of unconstrained SST patterns from coupled atmosphere–ocean simulations
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Figure 2.1: Patterns of sea-surface-temperature (SST) anomalies from data assimilation at the Last

Glacial Maximum (LGM) compared to modern-day doubling of CO2 (2↑CO2). LGM reconstruc-

tions include (A) Last Glacial Maximum Reanalysis (LGMR) (Osman et al., 2021), (B) Amrhein

et al. (2018), (C) lgmDA (Tierney et al., 2020), (D) Annan et al. (2022), and (E) the mean of the

four LGM patterns. (F) Pattern of the multi-model mean from near-equilibrium 2↑CO2 simula-

tions in LongRunMIP (Rugenstein et al., 2019), initialized from pre-industrial control. To show

SST patterns, local SST anomalies are divided by absolute values of global-mean SST anomalies

(consistent with feedbacks being radiative responses divided by temperature anomalies). All pan-

els show annual means. LGM reconstructions are infilled to modern coastlines (see Materials and

Methods).
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of the LGM, we still rely on AGCMs to estimate feedbacks and their uncertainties.

We calculate net feedbacks using AGCMs with prescribed SST and SIC boundary conditions.

We first conduct AGCM simulations with a “baseline” pattern representing the pre-industrial cli-

mate, for which we use SST and SIC in the Late Holocene (mean of 0–4,000 years ago) from the Last

Glacial Maximum Reanalysis (LGMR) (Osman et al., 2021). We then perform AGCM simulations

with SST and SIC boundary conditions (see Materials and Methods) from 2↑CO2 in LongRunMIP

(Rugenstein et al., 2019) and the four LGM reconstructions (Tierney et al., 2020; Osman et al.,

2021; Annan et al., 2022; Amrhein et al., 2018) (SST in Fig. 2.1; SIC in Fig. 2.S2).

Finally, we calculate global-mean #N and #T in each 2↑CO2 and LGM simulation relative

to the baseline, which yields net feedbacks as ω = #N/#T using Eq. (2.1). All forcings are held

constant (#F = 0) at modern-day levels across our AGCM simulations; therefore, all changes in

simulated top-of-atmosphere radiation and feedbacks can be attributed solely to SST/SIC di!er-

ences (see Materials and Methods).

We find that ω2↓ is more negative (stabilizing) than ωLGM, indicating that the climate system

is more sensitive to LGM forcing than to 2↑CO2 (Fig. 2.2). We use the LGMR pattern (Fig. 2.1A)

in five AGCMs (CAM4, CAM5, CAM6, GFDL-AM4, and HadGEM3-GC3.1-LL) to evaluate un-

certainty from atmospheric model physics, and we use all four LGM reconstructions (Fig. 2.1A–D)

in CAM4 and CAM5 to evaluate uncertainty from LGM patterns.

This approach is supported by the result that AGCMs tend to reproduce observed relationships

between SSTs and top-of-atmosphere radiation when observed SST patterns are prescribed (Allan

et al., 2014; Loeb et al., 2020). The LGM pattern e!ect, #ω in Eq. (2.3), is negative across

all five AGCMs and all four LGM reconstructions. The five AGCMs produce a mean #ω =

↓0.40 W m↑2 K↑1 (Fig. 2.2B; detailed results in Tables 2.S1–S2). We also evaluate uncertainty

in the 2↑CO2 pattern but find that this is of secondary importance (see Materials and Methods;

Figs. 2.S3–S4).

Our main result is that the climate is more sensitive to LGM forcing than it is to modern-day

2↑CO2 forcing (#ω < 0), implying lower estimates of modern-day ECS by Eq. (2.4), and this

finding is robust despite uncertainties in atmospheric physics and LGM reconstructions.
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Figure 2.2: Last Glacial Maximum (LGM) and 2↑CO2 climate feedbacks and LGM pattern e!ect

(#ω). Di!erent atmospheric general circulation models (AGCMs), all using the LGMR pattern for

the LGM, are indicated by symbols; di!erent LGM patterns (in CAM5 and CAM4) are indicated

by colors. Error bars for Annan and LGMR represent 1st and 4th quartiles of ensemble members

(Materials and Methods); central values indicate ensemble mean. For comparison with AGCM

results using LGM data assimilation, the following feedbacks (in mixed-layer ocean coupled to

AGCM) from previous studies are also included: CESM1-CAM5 (Zhu and Poulsen, 2021), CESM2-

CAM6 (Zhu et al., 2021), and CESM2-PaleoCalibr (Zhu et al., 2022) (modified version of CAM6).

(A) Scatter plot of 2↑CO2 feedbacks, ω2x, versus LGM feedbacks, ωLGM , with ω2x = ωLGM shown

as dotted line. (B) LGM pattern e!ect, #ω = ω2x↓ωLGM , using feedbacks shown in panel A, with

#ω = 0 shown as dotted line. Note that #ω includes SST pattern e!ects and contributions from

temperature dependence.
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2.5 Discussion

2.5.1 Physical mechanisms driving LGM pattern e!ects

For comparison with our feedbacks in AGCMs driven by LGM reconstructions, we examine pre-

viously published results (Zhu and Poulsen, 2021) from AGCMs coupled to mixed-layer “slab”

oceans (Fig. 2.2), which allow SST changes in response to imposed forcings but exclude changes

in ocean dynamics (Bitz et al., 2012). These mixed-layer-model versions of CESM1-CAM5 (Zhu

and Poulsen, 2021), CESM2-CAM6 (Zhu et al., 2021), and CESM2-PaleoCalibr (Zhu et al., 2022)

(using a modified CAM6), which di!er from our AGCM experiments by including forcings from ice

sheets and greenhouse gases, also produce #ω < 0.

Although disagreements in simulated SST patterns compared to proxy data suggest that free-

running coupled models cannot reliably estimate the value of #ω, the coupled models point to

mechanisms driving #ω that are consistent with the reconstructions and our AGCM simulations.

In this section, we begin by reviewing simulations in coupled models that demonstrate the physical

mechanisms linking patterns of forcing, SST response, and climate feedbacks.

First, compare zonal-mean patterns of e!ective radiative forcing and SST changes from CESM1-

CAM5 simulations (Zhu and Poulsen, 2021) under three forcing scenarios: 2↑CO2 forcing, LGM

forcing (ice sheets and greenhouse gases), and LGM ice-sheet forcing alone (including coastline

changes). The localized ice-sheet forcing causes the amplified SST response in the northern extra-

tropics at the LGM compared to 2↑CO2 (Fig. 2.3A–C).

Explaining the Northern Hemisphere’s response to LGM ice sheets has been a focus of pre-

vious studies, which found that amplified SST cooling in the northern extratropics is associated

with changes in atmospheric stationary waves, driven by changes in ice-sheet albedo and topog-

raphy (Zhu and Poulsen, 2021; Roberts et al., 2019; Amaya et al., 2022; Roe and Lindzen, 2001).

Di!erences in SST responses between LGM and 2↑CO2 persist at quasi-equilibrium in a fully

coupled (atmosphere–ocean GCM) version of CESM1-CAM5 (Fig. 2.3C; Fig. 2.S5). Comparing

the fully coupled model’s response (Fig. 2.3C) to LGM forcing with the data-assimilation patterns

(Fig. 2.3D) we use to quantify pattern e!ects supports the finding that LGM ice sheets amplify SST

cooling in the northern extratropics (Zhu and Poulsen, 2021; Roberts et al., 2019; Amaya et al.,

2022), but this cooling pattern is more pronounced in proxy reconstructions. The amplified cooling
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Figure 2.3: Zonal-mean patterns of e!ective radiative forcing (ERF) and sea-surface-temperature

(SST) anomalies. All anomalies are normalized through division by global-mean anomalies. (A–C)

Model simulations in CESM1-CAM5 from Zhu & Poulsen (Zhu et al., 2021). (A) ERF directly from

three fixed-SST simulations using atmospheric general circulation model with LGM greenhouse-gas

(GHG) and ice-sheet (Ice) forcing, 2↑CO2, and LGM ice-sheet forcing alone (Zhu et al., 2021)

(including coastline changes). (B) Equilibrium SST patterns, corresponding to panel A, in coupled

mixed-layer ocean model. (C) Quasi-equilibrium SST patterns from fully coupled atmosphere-

ocean model, comparing LGM forcings (Zhu et al., 2021) with abrupt-4↑CO2 forcing (Zhu et al.,

2019); no long-run 2↑CO2 simulation is available. Note vertical-axis scales. (D) Mean and range of

SST patterns from four data-assimilation reconstructions (Tierney et al., 2020; Osman et al., 2021;

Annan et al., 2022; Amrhein et al., 2018) of the LGM compared to 2↑CO2 multi-model mean from

LongRunMIP (Rugenstein et al., 2019).
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of extratropical SST, caused by ice-sheet forcing, causes the LGM feedback to be less stabilizing

than the feedback induced by CO2 forcing alone.

Decomposing ω from our AGCM simulations into component feedbacks (Fig. 2.S6), including

results from direct model output and from radiative kernels (see Materials and Methods), shows

that shortwave cloud feedbacks are responsible for much of the negative value of #ω and for much

of the spread across AGCMs. The combined feedback from changes in lapse rate and water vapor

also contributes to negative values of #ω. While shortwave clear-sky feedbacks from sea ice and

snow are also more positive for the LGM, cloud masking strongly damps the impact of those LGM

feedbacks.

Accounting for cloud masking (Soden et al., 2008; Raghuraman et al., 2023), feedbacks from

surface albedo are more positive in 2↑CO2, i.e., contribute a positive #ω, o!setting the negative

total #ω. Overall, our results align with the previous studies focused on the historical record that

emphasize cloud and lapse-rate feedbacks in pattern e!ects (Zhou et al., 2016; Andrews and Webb,

2018; Ceppi and Gregory, 2017; Dong et al., 2020).

Spatial distributions of feedbacks (Fig. 2.S7) clarify the connection between ice-sheet forcing,

SST response, and cloud feedbacks. Where the SST cooling from LGM ice sheets is amplified in

the North Pacific and North Atlantic, positive shortwave cloud feedbacks are prominent due to

increases in reflective low clouds (Zhou et al., 2016; Andrews and Webb, 2018; Ceppi and Gregory,

2017; Dong et al., 2019; Fueglistaler, 2019; Zhou et al., 2017; Amaya et al., 2022). Compared to

2↑CO2 simulations, LGM reconstructions have relatively small SST anomalies in tropical ascent

regions (Fig. 2.S1) where feedbacks are most negative (Zhou et al., 2016; Andrews and Webb, 2018;

Dong et al., 2019; Fueglistaler, 2019; Zhou et al., 2017; Kang and Xie, 2014). However, tropical

patterns at the LGM di!er across reconstructions, adding to the uncertainty in the LGM pattern

e!ect.

Despite these di!erences in the tropics, all four reconstructions produce a negative pattern e!ect

due to the robust amplification of cooling in the northern extratropics. The role of the northern

extratropics illustrates that pattern e!ects are not always dominated by the tropical Pacific, dis-

tinguishing the LGM pattern e!ect from the well-studied pattern e!ect of the historical period. In

summary, the LGM SST pattern produces a less-negative global climate feedback compared to the

2↑CO2 SST pattern and #ω < 0.
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2.5.2 Separating pattern e!ects from temperature dependence of feedbacks

While our explanation for feedback di!erences between LGM and 2↑CO2 forcing focuses on SST

pattern di!erences, we also estimate how #ω is a!ected by global-mean temperature within our

AGCM simulations. Our main AGCM simulations (Fig. 2.2), which determine our estimate of total

#ω, include not only the impact of SST patterns on feedbacks (pattern e!ects) but also di!erences

in feedbacks caused by other asymmetries between LGM cooling and modern-day warming under

2↑CO2 forcing (temperature dependence). We consider that

#ω ↔ #ωPatternOnly +#ωT , (2.5)

where #ωPatternOnly is the feedback change due to di!erent patterns of SST anomalies and #ωT is

the feedback change due to di!erent global-mean temperatures (T ). Recent community assessments

(Sherwood et al., 2020; Forster et al., 2021) assume warmer climates are more sensitive (#ωT > 0)

(PALAEOSENS Project Members, 2012; Köhler et al., 2015; von der Heydt et al., 2016; Friedrich

et al., 2016; Rohling et al., 2018; Yoshimori et al., 2011), which is at odds with the total #ω < 0

we find for the LGM in AGCMs and coupled models (Fig. 2.2).

To separate pattern e!ects from temperature dependence, we perform additional “pattern-

only” simulations in CAM4, CAM5, and CAM6 using the LGMR and 2↑CO2 patterns. For these

simulations, we multiply local SST anomalies by constant scaling factors to yield global-mean

#SST = ↓0.5 K with constant baseline SIC (see Materials and Methods). SST scaling preserves

spatial patterns of anomalies but forces global-mean #T to be small and equal across simulations,

i.e., #ωT ↔ 0 in the pattern-only simulations. We then repeat the feedback calculations, computing

#ωPatternOnly as in Eq. (2.3).

We estimate the temperature dependence #ωT as the residual di!erence between the main and

pattern-only AGCM simulations, rearranging Eq. (2.5) to #ωT ↔ #ω↓#ωPatternOnly (see Materials

and Methods). We note that ice-albedo contributions to #ω could arise from SST patterns or

temperature dependence, but our partitioning of #ω treats sea ice as part of #ωT .

The magnitude and sign of #ωT is found to be model-dependent, in agreement with recent

multi-model assessments (Renoult et al., 2023; Bloch-Johnson et al., 2021), but #ωT appears to

be positive and directionally consistent with standard assumptions (Sherwood et al., 2020; Forster

et al., 2021) for feedback temperature dependence. However, #ωPatternOnly is negative and larger
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than #ωT such that total #ω < 0 in each AGCM (Fig. 2.S8, Table 2.S3). These results suggest

that total #ω for the LGM is mostly attributable to SST pattern e!ects, and #ωT plays a smaller

role over this range of climates.

Recent assessments (Sherwood et al., 2020; Forster et al., 2021) considered #ωT for the LGM

but did not account for the larger, opposing term, #ωPatternOnly. The substantial LGM pattern

e!ect found here motivates revising the LGM evidence for modern-day ECS.

2.5.3 Climate sensitivity accounting for LGM pattern e!ects

Constraining modern-day ECS with paleoclimate evidence requires accounting for how forcings

and feedbacks di!er in paleoclimates relative to the modern-day 2↑CO2 scenario (Sherwood et al.,

2020; Forster et al., 2021; PALAEOSENS Project Members, 2012). LGM inferences of ECS begin

with applying Eq. (2.1) to the LGM in equilibrium, estimating the unadjusted LGM feedback as

ω↔
LGM = ↓

∑
#F/#T .

E!ective radiative forcings (#F ) include not only CO2 but also ice sheets (including sea level)

and, depending on the timescale chosen for ECS (Sherwood et al., 2020; Forster et al., 2021; Tierney

et al., 2020; PALAEOSENS Project Members, 2012), additional changes that have distinct impacts

at the LGM: vegetation, dust, N2O, and CH4 (see Materials and Methods). Finally, ω↔
LGM must

be adjusted for di!erences in feedbacks (#ω) relative to those operating in modern-day 2↑CO2,

following Eq. (2.4).

Our results suggest that the LGM feedback is more positive than the 2↑CO2 feedback because

of the LGM ice-sheet forcing and resulting SST pattern. Failing to account for this di!erence in

feedbacks would lead to the inference of higher values of modern-day ECS from the LGM, e.g.,

Hansen et al. (2023). Some past studies using fully coupled models have considered these feedback

di!erences indirectly by applying an “e”cacy” adjustment (Yoshimori et al., 2009) to the LGM

forcings.

The e”cacy framework has led to disparate results for multiple reasons: changes in how forcing

is quantified (Crucifix, 2006; Yoshimori et al., 2011; Kageyama et al., 2021) before ERF became

standard (Forster et al., 2021); the lack of data constraints on SST patterns simulated by fully

coupled models (Renoult et al., 2023; Hopcroft and Valdes, 2015; Kageyama et al., 2021); and
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the behavior of intermediate-complexity models with simplified cloud feedbacks (Stap et al., 2019;

Shakun, 2017). Because e”cacy is equivalent to the ratio of feedbacks ω2↓/ωLGM (Zhou et al.,

2023; Webb et al., 2017), our results could be framed as a median LGM-forcing e”cacy of 1.7

(see Materials and Methods; Tables 2.S1–S2), consistent with recent studies that find LGM-forcing

e”cacy greater than 1 using ERF and fully coupled models (Zhu and Poulsen, 2021; Zhu et al.,

2021, 2022).

However, the pattern-e!ect framework we use replaces the need for forcing e”cacy (Zhou et al.,

2023) (see Text S1), aligns with modern AGCM methods of quantifying feedbacks (Webb et al.,

2017) and ERF (Pincus et al., 2016), and incorporates data from the latest reconstructions of the

LGM.

To demonstrate the impact of LGM pattern e!ects, we follow methods in WCRP20 (Sherwood

et al., 2020) and focus on the 150-year timescale of climate sensitivity (S) applicable to modern

warming (Sherwood et al., 2020; Forster et al., 2021) (see Materials and Methods). We use WCRP20

because that assessment uniquely allows updates of individual parameters and quantitatively com-

bines lines of evidence, but our results would have the same directional impact on other assessments

(Forster et al., 2021; Tierney et al., 2020).

We use forcing values from WCRP20 to estimate the unadjusted LGM feedback, ω↔
LGM in

Eq. (2.4). However, given emerging evidence (Forster et al., 2021; Tierney et al., 2020; Osman

et al., 2021; Seltzer et al., 2021; Liu et al., 2023) after WCRP20, we report results using a global

temperature anomaly for the LGM of#TLGM = ↓6±1 K in addition to WCRP20’s value of↓5±1 K.

We implement our key finding by updating the LGM#ω, which includes LGM pattern e!ects for the

first time. We assign a Normal distribution to #ω, N (µ = ↓0.37,ε = 0.23) W m↑2 K↑1, reflecting

spread across AGCMs and SST reconstructions (see Materials and Methods). Our assessment of

#ω and its uncertainty relies on AGCMs to estimate feedbacks from prescribed SST/SIC patterns.

We include additional uncertainty tests in Figs. 2.S4 and 2.S9, demonstrating that our general

conclusions hold if the assumed ε for #ω is doubled.

Accounting for the LGM pattern e!ect reduces climate sensitivity inferred from the LGM evi-

dence (Fig. 2.4). With #TLGM ↔ ↓6 K, maximum likelihood for S from the LGM evidence alone

becomes 2.0 K (change of ↓1.3 K). Assuming a prior that is uniform in S from 0–20 K (see Materials

and Methods) for the LGM evidence alone (Table 2.S4), we find a posterior median for modern-day
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Figure 2.4: Inference of modern-day climate sensitivity including the LGM pattern e!ect. Results

from WCRP20 (Sherwood et al., 2020) with no LGM pattern e!ects and original assumption of

#TLGM → N(µ = ↓5, ε = 1) →C (gray) and with revised #TLGM → N(↓6, 1) →C (black) based

on IPCC AR6 (Forster et al., 2021). Revised climate sensitivity including LGM pattern e!ects

from this study (light and dark blue) assuming #ω → N(µ = ↓0.37, ε = 0.23) Wm↑2 K↑1.

Climate sensitivity shown is e!ective sensitivity (S) representing 150-year response, as in WCRP20

(Sherwood et al., 2020). (A) Likelihood functions for S based on only the LGM line of evidence.

(B) Posterior PDF after combining LGM with other lines of evidence, assuming a uniform-ω prior

(upper panel) or a uniform-S prior (lower panel). Outlier lines indicate 5–95th percentiles, dots

indicate 66% likely range, and box indicates 25–75th percentiles and median.
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ECS of 2.4→C, 66% likely range 1.7–3.5 K (1.4–5.0 K, 5–95%).

Combining the updated LGM evidence with existing likelihoods for the other lines of evidence

(process understanding, historical record, and Pliocene) yields revised Bayesian probability distri-

butions for the two priors in WCRP20: uniform in ω (WCRP20’s “Baseline”) and uniform in S (a

robustness test).

The impact of the LGM pattern e!ect on the combined evidence is most pronounced on the

upper bound of S, which has been notoriously di”cult to constrain (Knutti and Hegerl, 2008).

Assuming #TLGM ↔ ↓6 ± 1 K, the median and 66% range from combining lines of evidence for

S becomes 2.9 K (2.4–3.5 K) with a uniform-ω prior or 3.1 K (2.6–3.9 K) with a uniform-S prior.

Corresponding 5–95% ranges are 2.1–4.1 K with uniform-ω and 2.3–4.7 K with uniform-S.

Accounting for pattern e!ects in #ω for the LGM thus reduces the central estimate of modern-

day ECS by approximately 0.5 K and reduces the 66% range’s upper bound by 0.6 K and 0.9 K

for the uniform-ω and uniform-S priors, respectively, indicating substantially stronger constraints

than WCRP20 (Sherwood et al., 2020) even after allowing for more glacial cooling. While the

qualitative assessment in IPCC AR6 (Forster et al., 2021) cannot be quantitatively updated, these

results suggest stronger constraints on modern-day ECS than assessed there, as well.

Accounting for LGM pattern e!ects—enabled by recent advances in LGM SST reconstruction

using paleoclimate data assimilation and in quantifying pattern e!ects using atmospheric models—

provides a tighter upper bound on modern-day ECS. While each line of evidence will surely evolve

as scientific understanding improves, the results presented here demonstrate that pattern e!ects

must be accounted for when inferring modern-day climate sensitivity from paleoclimate periods

that are substantially a!ected by non-CO2 forcing.

2.6 Materials and Methods

2.6.1 Data-assimilation reconstructions of the LGM

We use four LGM reconstructions to quantify the LGM pattern e!ect, sampling uncertainty across

data assimilation methods and model priors (Amrhein et al., 2020; Parsons et al., 2021). Osman

et al. (2021) produced the time-dependent Last Glacial Maximum Reanalysis (“LGMR”) spanning

the past 24,000 years; the SST and SIC fields that represent the LGM in their reanalysis are
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time means spanning 19,000–23,000 years ago. Tierney et al. (2020) produced the state estimate

“lgmDA” dataset.

Both the LGMR and lgmDA use priors from isotope-enabled simulations in iCESM1.2 and

iCESM1.3 with assimilation of seasonal and annual SST proxies in an ensemble Kalman filter; there

are di!erences in the proxy databases and methods between the two reconstructions. Annan et al.

(2022) also used an ensemble Kalman filter but with a multi-model prior, including 19 ensemble

members from a wide array of climate models spanning PMIP2 (launched in 2002) to PMIP4

(launched in 2017); they assimilated annual SST proxies and land-temperature proxies, and applied

an adjustment to the prior ensemble to pre-center the prior around available proxy data.

Amrhein et al. (2018) fit the MITgcm ocean model to seasonal and annual SST proxies (Wael-

broeck et al., 2009) using least-squares with Lagrange multipliers by adjusting prior atmospheric

fields from a CCSM4 LGM simulation (Brady et al., 2013). While these approaches employ a

diversity of DA methods, versions of CESM1-CAM5 form the prior for two of the reconstructions

(Tierney et al., 2020; Osman et al., 2021), and the prior covariances could be biased by model

errors. Moreover, archived proxy data are geographically inhomogeneous with strong preferences

for the Northern Hemisphere and tropics; additional data could lead to greater SST agreement

across reconstructions outside of the Northern Hemisphere.

2.6.2 Simulations with atmospheric general circulation models

SST/SIC boundary conditions (BCs) for the LGM, Late Holocene baseline, and 2↑CO2 are prepared

to maintain constant forcing, i.e., #F = 0 in Eq. (2.1), across simulations. Topography is held

constant; that is, the LGM ice sheets are not present in AGCM simulations because their impact is

already included as a forcing, and we are isolating feedbacks from changing SST/SIC. For the LGM

and Late Holocene datasets, we adjust for di!erences relative to modern coastlines using kriging

and extrapolation in polar regions. Details of sea-level adjustments are provided in Text S3.

The 2↑CO2 BC is the multi-model mean of 200 years from the end of six 2↑CO2 simula-

tions, initialized from pre-industrial control states, in LongRunMIP (Rugenstein et al., 2019):

CESM1.0.4 (years 2300–2500), CNRM-CM6-1 (years 550–750), HadCM3L (years 500–700), MPI-

ESM-1.2 (years 800–1000), GFDL-ESM2M (years 4300–4500), and MIROC3.2 (years 1803–2003).
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These simulations are near equilibrium but only represent an estimate of the true equilibrium SST

response to 2↑CO2.

The Late Holocene, defined as the climatological mean of 0–4,000 years ago in the LGMR

(Osman et al., 2021), is used as the baseline SST/SIC for all feedback calculations. This baseline

represents a long-term mean of the pre-industrial climate, constrained by assimilation of proxy

data. After adjusting for modern sea level, the four LGM BCs and the 2↑CO2 BC for SST are

prepared by adding the SST anomalies from each of the four reconstructions to the Late Holocene

baseline SST. Due to nonlinear behavior of sea ice, the LGM and 2↑CO2 BCs for SIC are not

added to the baseline as anomalies but rather are used directly (Fig. 2.S2).

We run simulations with the Late Holocene baseline, 2↑CO2, and LGMR in each of five AGCMs.

We run simulations with all four of the LGM reconstructions (LGMR, lgmDA, Amrhein, Annan)

in CAM4 and CAM5, sampling the spread in LGM feedbacks from di!erent reconstructions in two

AGCMs with distinct relationships linking SST patterns to radiative feedbacks based on Green’s

functions (Dong et al., 2019; Zhou et al., 2017). Spin-up/analysis period/climatological forcing

for each AGCM is 5 yr/25 yr/2000 (CESM1.2.2.1-CAM4 (Neale et al., 2013), CESM1.2.2.1-CAM5

(Neale et al., 2012), and CESM2.1-CAM6 (Danabasoglu et al., 2020) at 1.9→↑2.5→ latitude-by-

longitude resolution); 5 yr/25 yr/2014 (HadGEM3-GC3.1-LL (Williams et al., 2017) at N96, →135-

km resolution); and 1 yr/30 yr/2001 (GFDL-AM4 (Held et al., 2019) at C96, →100-km resolution).

Parent coupled models of the AGCMs considered here sample a wide range of climate sensitivities,

from 2.95 K to 5.54 K, and the AGCMs span a wide range of pattern e!ects in the historical record,

from 0.38 W m↑2 K↑1 to 0.84 W m↑2 K↑1 (Andrews et al., 2022).

To compute ω, we take global means over the analysis periods for net top-of-atmosphere radiative

imbalance (N) and near-surface air temperature (T ). Di!erences are taken relative to the Late

Holocene baseline, yielding “e!ective” feedbacks (Rugenstein and Armour, 2021) as ω = #N/#T

for LGM and 2↑CO2 simulations, given that #F = 0 in Eq. (2.1) by design.

To evaluate the impact of uncertainty in the 2↑CO2 pattern, we also consider existing simu-

lations of abrupt-4↑CO2 with 150-yr regressions (Gregory, 2004) of #N versus #T , denoted as

ω4↓(150 yr), to estimate ω2↓ (results in Figs. 2.S3–S4, Tables 2.S1–S2). Results are consistent

using either method of estimating ω2↓. To compute #ω using ω4↓(150 yr), we apply a timescale

adjustment (ϑ) to reconcile feedbacks from equilibrium paleoclimate data with the feedback that



23

applies to 150-year “e!ective climate sensitivity.”

2.6.3 Pattern-only simulations separating pattern and temperature dependence

Feedback di!erences can be attributed to di!erences in SST patterns and in global-mean near-

surface air temperature (Sherwood et al., 2020), such that

#ω ↔ #ωPatternOnly +#ωT . (2.6)

To separate pattern and temperature impacts on #ω, we conduct additional “pattern-only” simu-

lations in CAM4, CAM5, and CAM6 with the LGMR and 2↑CO2 patterns. For these simulations,

we multiply local SST anomalies by constant scale factors, k, which are determined for each pattern

so that the global-mean #SST is reduced to ↓0.5 K for both simulations. The constant scale factor

for a given pattern of anomalies is calculated from the global-mean #SST as

k =
↓0.5 K

#SSTglobal
,

and scaled patterns are then created as

#SSTscaled = k#SST

at each grid cell. We hold SIC constant at the Late Holocene baseline.

SST scaling preserves the spatial pattern of anomalies but forces global-mean #T to be small

enough that feedback changes due to temperature dependence are negligible (#ωT ↔ 0). We repeat

the feedback calculations, computing

#ωPatternOnly ↔ ω(↑0.5K)
2↓ ↓ ω(↑0.5K)

LGM

as in Eq. (2.3). While there is no existing method that directly isolates temperature dependence

in AGCM simulations, the temperature dependence can be approximated as the residual di!erence

between our main and pattern-only simulations, rearranging Eq. (2.5) to

#ωT ↔ #ω↓#ωPatternOnly.

In this framework, feedback changes due to sea ice are included in temperature dependence.
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We employ this pattern-scaling method because it aligns with intuition for pattern e!ects cap-

tured by Green’s functions (Dong et al., 2019; Zhou et al., 2017). We do not use Green’s functions

to calculate the pattern-only feedbacks, but we briefly discuss the Green’s functions framework here

to explain the pattern-only AGCM simulations. In the linear framework of Green’s functions:

#N =
∑

j

(
ϖN

ϖSSTj

#SSTj

)
+ ϱN , (2.7)

#T =
∑

j

(
ϖT

ϖSSTj

#SSTj

)
+ ϱT , (2.8)

where j represents each grid cell, #SSTj represents the full SST anomaly at grid cell j, ϖN/ϖSSTj

represents the global-mean top-of-atmosphere radiative response to a unit increase in local SST at

grid cell j, ϖT/ϖSSTj similarly represents the response of global-mean near-surface air temperature,

and ϱ represents changes that are independent of SST.

Because the feedback ω = #N/#T , constant scale factors applied as k#SST appear in the

feedback calculation as

ω =
k#N

k#T

if ϱN = ϱT = 0 and SST patterns determine ω. In this case where SST patterns are the sole control

on ω, scale factors cancel and have no e!ect on feedbacks or pattern e!ects.

By comparing feedbacks from scaled pattern-only simulations with feedbacks from simulations

with full SST anomalies, we quantify feedback changes that cannot be explained by SST patterns,

which we attribute to feedback dependence on global-mean temperature. For example, temperature

dependence could arise from ϖN/ϖSSTj changing with global-mean temperature or from sea ice

appearing at lower latitudes as temperature decreases.

2.6.4 Feedback decomposition using model fields and radiative kernels

Net ω is calculated from changes in top-of-atmosphere radiation (#N) divided by changes in global-

mean temperature (#T ). #N can be separated into shortwave clear-sky (SWcs), longwave clear-sky

(LWcs), and cloud radiative e!ect (CRE):

#N = #NSWcs +#NLWcs +#NCRE. (2.9)
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Each component of the radiation is available from AGCM output, and dividing all terms by #T

yields feedbacks for each component, which sum to the net feedback. The total clear-sky feedback

is the sum of shortwave and longwave components. Because CRE is calculated as all-sky radiation

(N) minus clear-sky radiation, CRE is a!ected by changes in non-cloud variables.

With radiative kernels (Soden et al., 2008; Shell et al., 2008), feedbacks can be decomposed into

contributions from temperature, moisture, and surface albedo. Cloud feedbacks can be estimated

by controlling for changes in non-cloud variables, and feedbacks from changing surface albedo can

be adjusted to account for overlying cloud cover, which we do here following past studies (Soden

et al., 2008). Radiative kernels are linearized around a specific climate in a specific model, however,

and are prone to errors when applied to di!erent climates and models.

We use CAM5 kernels (Pendergrass et al., 2018), convolving them with the monthly mean

climatology of anomalies in each AGCM simulation to produce feedbacks in Figures 2.S6–S7, and

zonal means in Figures 2.S12–S22 (described in Text S5). HadGEM3-GC3.1-LL is not included

in kernel analysis due to model-output limitations. GFDL-AM4’s 2↑CO2 simulation has error in

the kernel-derived clear-sky feedback equal to 15.6% of the actual feedback, exceeding the 15%

threshold commonly used as a test of clear-sky linearity (Ceppi and Gregory, 2017; Shell et al.,

2008); all other simulations have clear-sky feedback errors less than 10%.

Residuals shown in Figure 2.S6 are based on total (all-sky) radiation:

ωResidual = ωNet ↓
∑

ωj , (2.10)

where ωNet is the net feedback from model output, and
∑

ωj is the sum of each of the following

kernel-derived feedbacks: Planck, lapse rate, water vapor, surface albedo, shortwave cloud, and

longwave cloud.

2.6.5 Bayesian estimate of modern-day climate sensitivity

We follow methods (Sherwood et al., 2020) and code (Webb, 2020) provided by WCRP20 for calcu-

lating climate sensitivity, but we provide a summary of relevant methods here. Equilibrium climate

sensitivity (ECS) is the steady-state change in global-mean temperature (T ) from a doubling of

CO2, traditionally with ice sheets and vegetation assumed fixed. When inferring climate sensitivity

that is relevant to modern warming from paleoclimate evidence, changes in the paleoclimate radia-
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tive budget that are distinct from feedback processes in modern-day 2↑CO2 are treated as forcings;

this is typically accomplished by separating “slow” timescale changes as forcings (e.g., ice sheets)

from “fast” timescale changes as feedbacks (PALAEOSENS Project Members, 2012). WCRP20

applies this framework by focusing on “e!ective” climate sensitivity (S), i.e., the 150-year system

response.

Relative to WCRP20, our key update only a!ects #ω for the LGM. However, given evidence

(Forster et al., 2021; Tierney et al., 2020; Osman et al., 2021; Seltzer et al., 2021; Liu et al., 2023)

published after WCRP20 showing LGM cooling centered around ↓6→C instead of ↓5→C, we report

our main results using both assumptions for #TLGM (Fig. 2.4; Fig. 2.S4).

To estimate S, we use a modified version of WCRP20’s energy balance for the LGM,

#TLGM =
↓(↓0.57#F2↓ +#F ↗)(

ω2→
1+ε

↓#ω
) , (2.11)

which determines ω2↓ and S = ↓#F2↓/ω2↓. We substitute our #ω, which includes pattern and

temperature dependence.

Other than testing a colder #TLGM, the parameters are unchanged from WCRP20 with the

following Normal distributions: modern-day forcing from 2↑CO2: #F2↓ → N (µ = 4.0,ε =

0.3) W m↑2; total non-CO2 LGM forcing: #F ↗ → N (↓6.15, 2) W m↑2 (consisting of ↓3.2 from

ice sheets, ↓1.1 from vegetation, ↓1.0 from dust aerosols, ↓0.28 from N2O, and ↓0.57 from

CH4); timescale transfer parameter: ϑ → N (0.06, 0.2); LGM temperature anomaly: #TLGM →

N (↓5, 1) →C, or revised N (↓6, 1) →C. In WCRP20, #ω = #ωT = ↓ς#TLGM/2, with ς → N (µ =

0.1,ε = 0.1) W m↑2 K↑2.

Quantification of non-CO2 e!ective radiative forcing from ice sheets (including sea level), dust

and other aerosols, vegetation, and other greenhouse gases represents substantial uncertainty. As

noted in Zhu et al. (2021), estimates of the e!ective radiative forcing for each component of LGM

forcing still need to be constrained, and the uncertainty in radiative e!ects—especially due to

dust/aerosols (Kok et al., 2023; Mahowald et al., 2024) and vegetation changes—may be underesti-

mated in WCRP20. Future paleoclimate research on dust and other aerosols (Sagoo and Storelvmo,

2017; Albani and Mahowald, 2019; Albani et al., 2018) and vegetation (Prentice et al., 2011; Bartlein

et al., 2011) could improve the estimates used here and in paleoclimate modeling (Kageyama et al.,

2017; Schmidt et al., 2014). Recent assessments (Sherwood et al., 2020; Forster et al., 2021; ?) dis-
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cuss how dust and other aerosols, vegetation, and non-CO2 greenhouse gases also act as feedbacks

on fast timescales, and some studies (Tierney et al., 2020; Hansen et al., 2023) have calculated a

version of climate sensitivity that assumes equivalency in these feedbacks (and in feedbacks from

SST patterns) between the LGM and modern-day CO2, leading to higher values of ECS (Tier-

ney et al., 2020). In the IPCC AR6 (Forster et al., 2021) framework for modern-day ECS, these

biogeophysical and non-CO2 biogeochemical changes are presented as feedbacks (central value of

↓0.01 W m↑2 K↑1). However, AR6 does not address how to account for the LGM’s distinct

dust/aerosol and vegetation changes when estimating modern-day ECS from LGM evidence, and

this accounting should be a topic of future research.

From the AGCM results in this study, we incorporate pattern e!ects in#ω of Eq. (2.6), assigning

a revised #ω → N (↓0.37, 0.23) W m↑2 K↑1. The revised distribution for #ω in our study is based

on propagating uncertainty, estimated as spread across AGCMs and LGM reconstructions. To

combine uncertainty, we assume that within CAM6, GFDL-AM4, and HadGEM3, the spread in

#ω from di!erent LGM reconstructions would be the same as in CAM4 and CAM5. We add

the di!erences in #ω from each pattern in CAM4 and CAM5, where di!erences are computed

relative to #ω using the LGMR pattern, to the results from the remaining three AGCMs. The

e!ect is to treat errors as arising independently in reconstructions and AGCMs. We include #ω

from extreme-quartile simulations using ensemble members from Annan and LGMR as part of the

combined sample. There are 8 simulations from CAM4 and 8 from CAM5 that determine spread

from LGM patterns. Note that the spread from LGM patterns is similar between CAM4 and CAM5

(Fig. 2.2).

With the combined sample, we perform bootstrap resampling (described in Text S4) with 105

iterations and a sample size of 19 (equal to the number of actual AGCM simulations). The mean

over all iterations is #ω = ↓0.37 (95% range: ↓0.47 to ↓0.26) W m↑2 K↑1, and mean sample

standard deviation = 0.23 (95% range: 0.15 to 0.31) W m↑2 K↑1, which informs our assigned µ

and ε, respectively. In Figure 2.S4, we include an uncertainty test by doubling ε to 0.46 Wm↑2 K↑1.

Using the same bootstrap method, we calculate forcing e”cacy (Hansen et al., 2005) for the

LGM, which is equivalent to the ratio of feedbacks ω2↓/ωLGM, to have a median value of 1.7 (95%

range: 1.5 to 2.0), mean value of 2.1 (95% range: 1.6 to 2.6), and sample standard deviation of 1.1

(95% CI: 0.6 to 1.4). E”cacy is strongly a!ected by division of small values of ωLGM, hence CAM6
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becomes an outlier in the e”cacy calculation. We report the median in the main text to reduce

the outlier impact.

Calculations for LGM likelihoods and Bayesian probability density functions (PDFs) for S

follow the Monte Carlo methods in WCRP20 (Sherwood et al., 2020; Webb, 2020). Likelihoods

are independent of the prior, but combining the likelihoods with a prior is required to create

posterior PDFs that combine lines of evidence. We show results for both priors in WCRP20: the

Uniform(↓10, 10) W m↑2 K↑1 prior on ω (their “Baseline”) and the Uniform(0, 20) →C prior on

S (robustness test, using a prior that is more conservative regarding the possibility of high climate

sensitivity).
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2.7 Appendix: Supplemental information

2.7.1 Text S1. Forcing e”cacy and pattern e!ects

In this section, we briefly consider the relationship between “e”cacy” and pattern e!ects, which

has been investigated in a recent study (Zhou et al., 2023). Hansen et al. (2005) defined forcing

“e”cacy” to be the global temperature response per unit forcing relative to the temperature re-

sponse to CO2 forcing. Forcing e”cacy could also be viewed as translating one unit of forcing by

a non-CO2 agent, e.g., ice sheets, into the equivalent amount of CO2 forcing which would cause

the same global-mean #T . While past research on forcing e”cacy has considered that di!erent

forcings have di!erent temperature impacts (Hansen et al., 2005), analyses using the e”cacy frame-

work for the LGM have produced disparate results (Renoult et al., 2023; Zhu et al., 2021; Stap

et al., 2019; Shakun, 2017; Hopcroft and Valdes, 2015; Yoshimori et al., 2011), possibly due to

simplified physics of intermediate-complexity models (Stap et al., 2019; Shakun, 2017). Because of

these results, WCRP20 inflates uncertainty on LGM forcings.

E”cacy, ϱ, can be equivalently framed as a ratio of radiative feedbacks (Richardson et al.,

2019; Zhou et al., 2023), e.g., ϱIceSheet = ω2x

ωIceSheet
. The negative LGM pattern e!ect #ω = ω2x ↓

ωLGM, #ω < 0, which we find in AGCM simulations using data-assimilation reconstructions for

the LGM, is consistent with an LGM e”cacy greater than 1. The e”cacy of ice sheets is greater

than 1 in the following model-only studies with mixed-layer oceans coupled to atmospheric general

circulation models: CESM1-CAM5 (Zhu et al., 2021), CESM2 (Zhu et al., 2021), and CESM2-

PaleoCalibr (Zhu et al., 2022) (Chapter 2 SI Appendix, Text S2). Some intermediate-complexity

models (Stap et al., 2019; Shakun, 2017), however, have reported ice-sheet e”cacy less than 1.

The pattern e!ect, combined with temperature dependence, can equivalently explain forcing

e”cacy (Zhou et al., 2023). We use the pattern-e!ect framework rather than e”cacy because it

allows for quantification of feedback changes in AGCMs using observational constraints on SST

patterns from data assimilation and has strong theoretical underpinnings (Dong et al., 2019; An-

drews et al., 2018; Zhou et al., 2023). The pattern-e!ect framework is oriented around the climate

feedback, ω, which is the key uncertain parameter for climate sensitivity. We follow methods in

WCRP20 (Sherwood et al., 2020) to account for #ω for the LGM in estimates of modern-day cli-

mate sensitivity. We refer readers to Zhou et al. (2023) for further explanation of the connection
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between e”cacy and pattern-e!ect frameworks.

2.7.2 Text S2. LGM pattern e!ects in coupled models

Simulations with mixed-layer ocean models coupled to AGCMs (known as slab ocean models (Bitz

et al., 2012), “SOM” hereafter) in CESM1-CAM5 (Zhu et al., 2021), CESM2.1-CAM6 (Zhu et al.,

2021), and CESM2-PaleoCalibr (Zhu et al., 2022) illustrate pattern e!ects in coupled models. Note

that feedbacks from ocean dynamics are excluded in the SOM, and models’ SST/SIC patterns are

not constrained by proxy data, hence we use the SOM only to support interpretation of the LGM

pattern e!ect. Feedbacks in SOM simulations are calculated as ω = !ERF
!T

, where the e!ective

radiative forcing (ERF) is determined from introducing forcings in separate simulations in the

corresponding AGCMs (keeping SST/SIC fixed at pre-industrial values), and #T is the equilibrium

change in global-mean near-surface air temperature in the SOM (also known as reference-height

temperature, or “TREFHT” in CESM name conventions). The ERF is a!ected by changes in

land-surface temperatures, which are not held constant in AGCM simulations due to practical

limitations, and an adjustment (Zhu et al., 2021; Hansen et al., 2005) to the ERF can be made to

account for land changes—see Zhu et al. (2021) for methods.

This adjustment, which is based on a climate sensitivity parameter (Zhu et al., 2021), can also

be applied to estimate an “adjusted ERF” for LGM ice sheets, although it is di”cult to assess

the validity of the adjustment for ice-sheet forcing, which a!ects not only land temperatures but

also topography. Radiative kernels based on modern climate would typically be used to validate

the ERF adjustment (Zhu et al., 2021), but they cannot be applied with LGM topography. Figure

2.S11 of the SI Appendix shows feedbacks from coupled models using both ERF and adjusted ERF.

Note that these values do not a!ect our quantification of #ω for ECS calculations, which comes

from AGCM simulations.

2.7.3 Text S3. Preparation of SST/SIC boundary conditions

SST and SIC boundary conditions (BCs) for the LGM, Late Holocene baseline, and 2↑CO2 are

prepared to enable consistent calculation of the net feedback (ω) that is applicable to a modern-day

doubling of CO2. When changing the surface BCs in AGCM simulations to compute ω, #F = 0
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in Eq. 1 only if there are no changes in land-sea distribution or ice sheets. For the LGM and

Late Holocene datasets, we adjust for di!erences in land-sea distribution, determined from Peltier

et al. (2015) and Argus et al. (2014), compared to present day using kriging and extrapolation near

coastlines in polar regions. While sea-level changes must be neutralized to preserve #F = 0 in the

AGCM simulations, infilling SST over the Sunda Shelf represents a notable uncertainty (DiNezio

and Tierney, 2013; DiNezio et al., 2018). The alternative option, holding all forcings constant

at LGM rather than modern values, would require changing modern topography to include LGM

ice sheets and inherit sea level of the LGM. Those changes could introduce more uncertainty in

estimates of ω that are relevant to future warming. Here we only consider the framework with

constant modern-day forcings.

For SST, kriging is performed across overlapping subset regions of radius ↔ 3000 km spaced

around the globe. Results for overlapping subset regions are merged using inverse-distance weighting

from the center of each subset region. Kriging results are retained only where no pre-existing SST

value exists in a dataset. Over polar regions and inland waters, inverse-distance extrapolation

populates the SST field.

For SIC, all values are first required to be no less than the ice-sheet fraction at that location,

i.e., modern seas that were covered by ice sheets at the LGM, such as the Hudson Bay, are assigned

a minimum SIC that equals the LGM ice fraction at 21,000 years ago (Peltier et al., 2015; Argus

et al., 2014). For modern seas which were land but not ice sheet at the LGM, SIC is populated

based on the SST. This step uses the SIC formula from the CAM boundary condition protocol

(Hurrell et al., 2008), where SIC = 100% if SST < ↓1.8→C, SIC = 0% if SST > 4.97→C,

and otherwise SIC = 0.729 ↓
(
SST+1.8
9.328

)1/3
. Gaussian smoothing is applied to the result, reducing

any sharp boundaries caused by the infilling. The SIC formula above is also applied to maintain

internally consistent values of SST and SIC (Hurrell et al., 2008) in the Late Holocene baseline.

See Chapter 2’s SI Appendix, Text S4, for uncertainty tests regarding sea ice.

The Annan dataset includes only annual SST and no reconstruction of SIC. Because SIC is

required in all AGCMs, we assign the SIC from Amrhein to the Annan data. In a CAM4 test using

the LGMR SIC with Annan SSTs (instead of the Amrhein SIC), #ω is marginally more negative

(ωLGM changes by < 0.1 Wm↑2 K↑1). This result suggests that uncertainty from assigning a

SIC reconstruction to Annan SSTs is small compared to uncertainty in the SST reconstruction.
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We assign the Amrhein SIC for the Annan SST in our main results because this choice is more

conservative in that it reduces the magnitude of the mean LGM pattern e!ect. For consistency,

the Annan SST is assigned the annual cycle from the Amrhein data for SST/SIC.

For the 2↑CO2 BC, we use output from LongRunMIP (Rugenstein et al., 2019) simulations

of abrupt and transient-1% yr↑1 doubling of CO2. We use the mean of 200 years of output from

the following six models to create a multi-model mean SST/SIC BC: CESM1.0.4 (years 2300–

2500), CNRM-CM6-1 (years 550–750), HadCM3L (years 500–700), MPI-ESM-1.2 (years 800–1000),

GFDL-ESM2M (years 4300–4500), and MIROC3.2 (years 1803–2003). HadCM3L results use years

500–700 due to an output error in the pre-industrial control run after year 700. All LongRunMIP

results are regridded to a standard 1.9→ ↑ 2.5→ (latitude ↑ longitude) grid. For SIC, monthly

output is available, and we compute a 200-year climatology for each model and then a multi-model-

mean climatology. For SST, annual output is available for each model and monthly output from

MIROC3.2. We compute the 200-year mean SST anomaly for each model and then apply the

annual cycle from MIROC3.2 to the multi-model mean. We also show results in Chapter 2’s SI

Appendix, Fig. 2.S3–S4, which do not use the LongRunMIP-2↑CO2 BC and instead use 150-year

regressions of abrupt-4↑CO2 from parent coupled models corresponding to each AGCM used in

this study, thereby sampling uncertainty in warming patterns because the 150-year regressions are

produced from di!erent models’ warming patterns.

BCs are regridded to the 1.9→ ↑ 2.5→ (latitude ↑ longitude) grid used for CAM4, CAM5, and

CAM6. HadGEM3-GC31-LL regrids to N96 (resolution of approximately 135 km), and GFDL-AM4

regrids to a C96 cubed sphere (resolution of approximately 100 km).

For the “pattern-only” simulations with SST anomalies normalized to ↓0.5K, we make the

following changes to the LGM and 2↑CO2 BCs. For the LGM, we use the LGMR SST. For

2↑CO2, we use the LongRunMIP SST. We compute the global-mean #SST for both datasets as

#SST, and we multiply all local SST anomalies by the scale factor ↓0.5/#SST. This scaling causes

the resulting global-mean #SST to become ↓0.5K, but the spatial pattern of the SST anomalies

is unchanged. We use ↓0.5K for both the LGM and 2↑CO2 so that there is no cooling–warming

asymmetry, and #T is small enough that temperature dependence of ω is negligible (i.e., #ωT ↔ 0,

and #ω ↔ #ωPatternOnly). #T is still large enough that we can compute ω = #N/#T without

requiring an excessively long simulation to overcome noise in the denominator. We use the baseline
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SIC (Late Holocene) in all of the pattern-only simulations so there are no changes in sea ice, so this

set of simulations also serves to check whether #ω is attributable to SIC rather than SST changes.

To examine whether the pattern-only results are sensitive to the scaling method of separating

pattern e!ects, we tested an alternative subtraction method in CAM4 (using the LGMR pattern for

the LGM and the LongRunMIP pattern for 2↑CO2). We ran alternative pattern-only simulations

with global-mean SST anomalies set to zero by subtracting the global mean at all locations. These

experiments produced consistent results for #ωPatternOnly compared to scaling.

An additional simulation was run in HadGEM3-GC3.1-LL with SIC held constant at the

Late Holocene baseline while the SST field is varied with the full value of anomalies, using the

LongRunMIP-2↑CO2 and LGMR patterns of SST. Results from this simulation are shared in

Chapter 2’s SI Appendix, Text S4.

This concludes the preparation steps for the main simulations (BCs from four data-assimilation

reconstructions for the LGM, one Late Holocene, and one 2↑CO2) and the “pattern-only” simula-

tions (two additional BCs: LGMR and LongRunMIP-2↑CO2 scaled to ↓0.5K). The final adjust-

ment to each BC follows the standard boundary-condition protocol for CAM, known as “bcgen.”

This process ensures that SIC and SST are plausibly bounded (e.g., SIC between 0 and 1), and

it transfers the monthly climatology to mid-month values which can be linearly interpolated in an

AGCM.

2.7.4 Text S4. Uncertainty of #ω

Figures 2.S12–S22 of the Chapter 2 SI Appendix show zonal means (indicated by brackets as [ω])

of the global-mean feedbacks that appear in Figure 2.S6 of the Chapter 2 SI Appendix. The net

feedback, clear-sky shortwave (SW), clear-sky longwave (LW), and cloud radiative e!ect are calcu-

lated directly from model output. The remaining feedbacks are from radiative kernel decomposition

(Materials and Methods) using CAM5 kernels. GFDL-AM4’s 2↑CO2 simulation has error in the

kernel-derived clear-sky feedback equal to 15.6% of the actual feedback, exceeding the 15% thresh-

old commonly used as a test of clear-sky linearity (Ceppi and Gregory, 2017; Shell et al., 2008;

Zelinka et al., 2020); all other simulations have clear-sky feedback errors less than 10%. Total cloud

feedback is also shown as the sum of kernel-derived SW and LW components.
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Each of the zonal-mean figures consists of: (A) In CAM5, mean and range of feedbacks across

four LGM reconstructions and 2↑CO2 from LongRunMIP. (B) In CAM5, mean and range of the

di!erence in feedbacks (#ω = ω2x ↓ ωLGM) across four LGM reconstructions from results in panel

A. (C) Feedbacks across various AGCMs, using the LGMR reconstruction of the LGM and 2↑CO2

from LongRunMIP. (D) Mean and range of #ω across various AGCMs from results in panel C.

Note that HadGEM3 is not included in the kernel-derived feedbacks due to limited availability of

model output.

2.7.5 Supplemental Figures

Figure 2.S1: Di!erences in LGM sea-surface temperature (SST) patterns compared to 2↑CO2

reference pattern. All local anomalies are normalized through division by the global-mean anomaly,

then di!erences between the 2↑CO2 pattern and LGM pattern are taken. Red regions indicate

where SST anomalies are relatively more amplified in 2↑CO2, while blue regions indicate where

SST anomalies are relatively more amplified at the LGM. (A–E) LGM patterns corresponding to

Fig. 2.1A–E, and 2↑CO2 reference pattern is Fig. 2.1F from LongRunMIP-2↑CO2. (F) In CESM1-

CAM5 (Zhu et al., 2021) mixed-layer ocean model without data assimilation, di!erence between

2↑CO2 and LGM patterns (shown in Fig. 2.S5C–D).
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Figure 2.S2: Sea-ice concentration (SIC) from data-assimilation reconstructions of the Last Glacial

Maximum (LGM) compared to 2↑CO2. (A) SIC from LGM Reanalysis (LGMR) (Osman et al.,

2021), Amrhein (Amrhein et al., 2018), lgmDA (Tierney et al., 2020), Annan (Annan et al., 2022)

(assigned SIC from Amrhein); mean of three LGM reconstructions (LGMR, Amrhein, and lgmDA);

and multi-model mean from near-equilibrium simulations of 2↑CO2 in LongRunMIP (Rugenstein

et al., 2019), where each of six models is averaged over the final 200 years of simulation. (B) Di!er-

ence in sea-ice concentration relative to Late Holocene baseline (LGMR reconstruction). All panels

show annual mean. Reconstructions are infilled to modern coastlines (Materials and Methods).
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Figure 2.S3: LGM pattern e!ect (#ω) based on LGM climate feedbacks in AGCMs and CO2

climate feedbacks from 150-year regression of abrupt-4↑CO2 in coupled models. Similar to Fig. 2.2,

except ω2x is replaced by ω(150 yr)
4x /1.06, the feedback from regression in abrupt-4↑CO2 simulations

using parent coupled models corresponding to each AGCM; a timescale adjustment of 1/1.06 is

applied based on the WCRP20 central estimate (Sherwood et al., 2020) to make 150-year 4↑CO2

feedbacks comparable with ωLGM equilibrium feedbacks. Di!erent models (all using the LGMR

pattern for the LGM) are indicated by symbols. Di!erent LGM patterns (in CAM5 and CAM4)

are indicated by colors. (A) Scatter plot of 4↑CO2 feedbacks (including adjustment factor of 1/1.06)

versus LGM feedbacks, with ω(150 yr)
4x /1.06 = ωLGM shown as dashed line. (B) LGM pattern e!ect,

#ω = ω(150 yr)
4x /1.06 ↓ ωLGM, using feedbacks shown in (A), with #ω = 0 shown as dashed line.

Note that #ω includes SST pattern e!ects and contributions from temperature dependence.
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Figure 2.S4: Uncertainty tests for modern-day climate sensitivity including LGM pattern e!ects.

Following Fig. 2.4, showing WCRP20 original (Sherwood et al., 2020) LGM #TLGM → N (µ =

↓5, ε = 1) K in the left column and revised LGM #TLGM → N (↓6, 1) K based on IPCC

AR6 (Forster et al., 2021) in the right column, including two uncertainty tests. Results from

WCRP20 (Sherwood et al., 2020) with no LGM pattern e!ect (gray and black) and our base

assumption (light and dark blue) for revised #ω → N (↓0.37, 0.23) Wm↑2K↑1 from Fig. 2.4 are

repeated here for comparison. The first uncertainty test (light and dark purple) increases the ε

assumption by a factor of two: #ω → N (↓0.37, 0.46) Wm↑2K↑1. The second uncertainty test

(light and dark red) concerns the 2↑CO2 pattern and feedback: a di!erent distribution, #ω →

N (↓0.27, 0.20) Wm↑2K↑1, is assigned based on results shown in Fig. 2.S3 using ω(150 yr)
4x /1.06,

the feedback derived from 150-year regressions of abrupt-4↑CO2 using parent coupled models

corresponding to each AGCM, including a timescale-adjustment factor of 1/1.06 from WCRP20’s

central estimate (Sherwood et al., 2020). Climate sensitivity shown is e!ective sensitivity (S) from

150-year response, as in WCRP20 (Sherwood et al., 2020). (A) Likelihood functions for S based

on only the LGM line of evidence. (B) Posterior PDF after combining LGM with other lines

of evidence in WCRP20 (Sherwood et al., 2020), assuming a uniform-ω prior (upper panel) or a

uniform-S prior (lower panel). Outlier lines indicate 5–95th percentiles, dots indicate 66% likely

range, and box indicates 25–75th percentiles and median.



38

Figure 2.S5: Spatial patterns of sea-surface temperature (SST) response and e!ective radiative

forcing (ERF) in CESM1-CAM5 model simulations from Zhu & Poulsen (Zhu et al., 2021). Spatial

patterns here are shown as zonal means in Fig. 2.3. All local anomalies are normalized through

division by the absolute value of the global-mean anomaly. (A–B) SST patterns in quasi-equilibrium

from fully coupled atmosphere–ocean model with LGM ice-sheet and greenhouse-gas forcings (Zhu

et al., 2021) compared to abrupt-4↑CO2 forcing (Zhu et al., 2019). (C–E) Equilibrium SST patterns

from mixed-layer ocean model coupled to CAM5, including a simulation with only LGM ice-sheet

forcing (Zhu et al., 2021). (F–H) ERF patterns from corresponding AGCM simulations in CAM5.
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Figure 2.S6: Feedback decomposition of Last Glacial Maximum (LGM) and 2↑CO2 climate feed-

backs in atmospheric general circulation models (AGCMs). Left column uses direct model outputs

in scatter plots of 2↑CO2 feedbacks (ω2x) versus LGM feedbacks (ωLGM), with ω2x = ωLGM de-

noted by dashed line. Cloud radiative e!ect (CRE), shortwave clear-sky (SWcs), longwave clear-sky

(LWcs), and net feedbacks are shown. (A) Results from various AGCMs, all using the LGMR re-

construction for the LGM. (B) Results from various LGM reconstructions in CAM4 and CAM5,

with di!erent reconstructions indicated by colors. Right column shows decomposition of #ω us-

ing CAM5 radiative kernels, with residual equal to the net feedback in models minus the sum of

kernel-derived feedbacks. (C) Results from various AGCMs (note that only net ω is available for

HadGEM3). (D) Results from various LGM reconstructions in CAM4 and CAM5. Lapse rate and

water vapor feedbacks are combined (LR+WV) given their anti-correlation across models (Soden

and Held, 2006). Note that #ω includes SST pattern e!ects and contributions from temperature

dependence.
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Figure 2.S7: Spatial decomposition of Last Glacial Maximum (LGM) and 2↑CO2 local climate

feedbacks in atmospheric general circulation models (AGCMs). Local feedbacks represent local

change in top-of-atmosphere radiation (#Nlocal) divided by global-mean change in near-surface air

temperature (#Tglobal); global integrals of the local feedbacks equal the global-mean feedbacks.

Top row shows net feedback (ωNet) from total all-sky changes in #N , second row shows ωClearSky

from changes in #N attributable to clear-sky radiation, third row shows cloud radiative e!ects

(ωCRE); rows 1–3 use direct model output. Fourth row shows radiative-kernel estimates of shortwave

cloud feedbacks (ωSW
Cloud). (A) 2↑CO2 multi-model mean based on five AGCM simulations using

LongRunMIP (Rugenstein et al., 2019) pattern. (B) LGM multi-model mean based on five AGCM

simulations using LGMR (Osman et al., 2021) pattern. (C) LGM multi-pattern mean in CAM5

using four LGM reconstructions. Note that radiative-kernel results for ωSW
Cloud exclude HadGEM3

due to output limitations.
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Figure 2.S8: Separating pattern and temperature dependence of feedback changes as total #ω ↔

#ωPatternOnly + #ωT . First column shows total #ω = ω2x ↓ ωLGM from Figure 2.2, calculated

in main simulations with full SST anomalies and SIC for 2↑CO2 and LGM (using LGMR re-

construction). Second column shows pattern-only simulations with global-mean #SST scaled to

↓0.5 K, where #ωPatternOnly ↔ ω(↑0.5K)
2x ↓ ω(↑0.5K)

LGM . Third column shows temperature dependence,

#ωT , approximated as the residual di!erence between the main and pattern-only simulations,

#ωT ↔ #ω↓#ωPatternOnly. Results in (A) CAM4, (B) CAM5, and (C) CAM6.
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Figure 2.S9: Likelihoods for LGM line of evidence with separate updates for SST pattern e!ects

and temperature dependence of feedbacks. (Dotted) WCRP20 LGM likelihood (Sherwood et al.,

2020), which includes an estimate of #ωT for the LGM but no adjustment for pattern e!ects.

(Dash-dot) Revised likelihood using WCRP20 estimate of #ωT but including feedback changes from

SST patterns based on pattern-only simulations in this study, assuming #ωPatternOnly → N (µ =

↓0.51, ε = 0.23) Wm↑2K↑1. (Solid) Revised likelihood using total revised #ω from this study,

as shown in Fig. 2.4, which includes both pattern e!ects and temperature dependence, assuming

#ω → N (↓0.37, 0.23) Wm↑2K↑1. (A) All likelihoods assume #TLGM → N (↓5, 1) K as in original

WCRP20 results (Sherwood et al., 2020). (B) All likelihoods assume #TLGM → N (↓6, 1) K, using

the updated central estimate from IPCC AR6 (Forster et al., 2021).
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Figure 2.S10: Patterns of SST anomalies from Annan (Annan et al., 2022) ensemble members in

the quartile with strongest negative climate feedback (ω). 19 ensemble members are ranked by

estimated ω, which is produced from CAM5 Green’s functions (Zhou et al., 2017), and 5 members

shown comprise the quartile with most-negative estimated ω. (A–E) Data-assimilation posterior

SST using model priors specified in subtitles. (F) Pattern of the quartile-mean SST. To show SST

patterns, local SST anomalies are normalized into patterns through division by the absolute value

of the global-mean SST anomaly (consistent with feedbacks being radiative responses divided by

global-mean temperature anomalies). All panels show annual means. LGM reconstructions are

infilled to modern coastlines (Materials and Methods).
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Figure 2.S11: Feedbacks and #ω using either e!ective radiative forcing (ERF) or adjusted ERF

from previously published simulations in mixed-layer ocean models. (A) Scatter plot of ω2x vs.

ωLGM in mixed-layer ocean models; ωLGM is shown for simulations using only the LGM ice-sheet

forcing (dark blue), which includes LGM sea-level changes, and for simulations using LGM ice-sheet

forcing and greenhouse-gas (GHG) forcings (royal blue). Dashed markers indicate corresponding

results using “adjusted ERF” to calculate feedbacks. (B) #ω based on feedbacks shown in panel A.

Note that in LGM simulations using CESM2.1-CAM6 (Zhu et al., 2021) and CESM2-PaleoCalibr

(Zhu et al., 2022), the LGM ice-sheet forcing and GHG forcing are applied in separate simulations,

and their sums are shown as LGM Ice & GHG. This linearity assumption was validated in CESM1-

CAM5 (Zhu et al., 2021).
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Figure 2.S12: Zonal-mean net feedback and #ω. (A) In CAM5, mean and range of feedbacks across

four LGM reconstructions and 2↑CO2 from LongRunMIP. (B) In CAM5, mean and range of the

di!erence in feedbacks (#ω = ω2x ↓ ωLGM) across four LGM reconstructions from results in (A).

(C) Feedbacks across various AGCMs, using the LGMR reconstruction of the LGM and 2↑CO2

from LongRunMIP. (D) Mean and range of #ω across various AGCMs from results in (C). Note

that HadGEM3 is not included in the kernel-derived feedbacks due to limited model output.
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Figure 2.S13: Zonal-mean net feedback and #ω. See caption of Figure 2.S12.



47

Figure 2.S14: Zonal-mean longwave clear-sky feedback and #ω. See caption of Figure 2.S12.
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Figure 2.S15: Zonal-mean feedback from cloud radiative e!ect (CRE) and #ω. See caption of

Figure 2.S12.
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Figure 2.S16: Zonal-mean planck feedback and #ω. See caption of Figure 2.S12.
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Figure 2.S17: Zonal-mean lapse rate feedback and #ω. See caption of Figure 2.S12.
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Figure 2.S18: Zonal-mean water vapor feedback and #ω. See caption of Figure 2.S12.
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Figure 2.S19: Zonal-mean surface albedo feedback and #ω. See caption of Figure 2.S12.
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Figure 2.S20: Zonal-mean shortwave cloud feedback and #ω. See caption of Figure 2.S12.
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Figure 2.S21: Zonal-mean longwave cloud feedback and #ω. See caption of Figure 2.S12.
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Figure 2.S22: Zonal-mean total cloud feedback and #ω. See caption of Figure 2.S12.



56

2.7.6 Supplemental Tables

Table 2.S1: LGM pattern e!ect and climate feedbacks in various AGCMs. LGM pattern e!ect

(#ω) calculated as the di!erence in net feedbacks (ω) from 2↑CO2 and LGM. ω2x is calculated in

AGCM simulations with LongRunMIP (Rugenstein et al., 2019) 2↑CO2 pattern of SST/SIC. ωLGM

is calculated in AGCM simulations with LGMR (Osman et al., 2021) pattern. Alternative values

for #ω are shown using 150-year regression of abrupt-4↑CO2 from coupled models corresponding to

each AGCM (Andrews et al., 2022). ϑ is assumed to be 0.06 based on WCRP20’s central estimate

(Sherwood et al., 2020). E”cacy, ϱ, shown in right column. Note that CAM6 is an outlier in

e”cacy calculations.
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Table 2.S2: LGM pattern e!ect and climate feedbacks from various SST patterns. LGM pattern

e!ect (#ω) from net feedbacks (ω) in 2↑CO2 and with various LGM patterns of SST/SIC. ω2x is

calculated in AGCMs with LongRunMIP (Rugenstein et al., 2019) 2↑CO2 pattern of SST/SIC.

ωLGM is calculated in AGCM simulations with four LGM patterns. Global-mean anomalies for

SST, near-surface air temperature (T ), and top-of-atmosphere radiative imbalance (N) are shown

for reference. Values for the LGM pattern e!ect are also shown using 150-year regression of abrupt-

4↑CO2 from coupled models (Andrews et al., 2022). ϑ is assumed to be 0.06 based on the WCRP20

central estimate (Sherwood et al., 2020). E”cacy, ϱ, is shown in the right column.
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Table 2.S3: Climate feedbacks and temperature dependence from pattern-only simulations.

#ωPatternOnly from pattern-only simulations, where LongRunMIP (Rugenstein et al., 2019) 2↑CO2

and LGMR (Osman et al., 2021) patterns of SST anomalies are scaled to global-mean #SST of

↓0.5 K. Feedback dependence on global-mean temperature (#ωT ) is estimated as the residual be-

tween #ω in main simulations and #ωPatternOnly, i.e., assuming #ω = #ωPatternOnly +#ωT . Note

that total #ω = ω2x ↓ ωLGM.
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Table 2.S4: Summary Statistics for Posterior PDFs of Climate Sensitivity. Note: The posterior

PDF from LGM evidence alone uses the uniform-S prior (0, 20) K, hence the shape of the posterior

PDF matches that of the LGM likelihood. Methods follow WCRP20.
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Chapter 3

PALEOCLIMATE PATTERN EFFECTS HELP CONSTRAIN CLIMATE
SENSITIVITY AND 21ST-CENTURY WARMING

This work is in review at Proceedings of the National Academy of Sciences as: Cooper, V.,

K. Armour, G. Hakim, J. Tierney, N. Burls, C. Proistosescu, T. Andrews, W. Dong, M. Dvorak,

R. Feng, M. Osman, Y. Dong. Paleoclimate pattern e!ects help constrain climate sensitivity and

21st-century warming. In review at Proceedings of the National Academy of Sciences.

3.1 Abstract

Paleoclimates provide examples of past climate change that inform estimates of modern warming

from greenhouse-gas emissions, known as Earth’s climate sensitivity. However, di!erences between

past and present climate change must be accounted for when inferring climate sensitivity from pa-

leoclimate evidence (PALAEOSENS Project Members, 2012; Sherwood et al., 2020; Cooper et al.,

2024). The Pliocene (5.3–2.6 Ma), a warm epoch with atmospheric CO2 concentrations similar to to-

day, is a potential analog for modern warming (Burke et al., 2018). Recent reconstructions indicate

the Pliocene was 1→C warmer than previously thought (Tierney et al., 2025b; Annan et al., 2024),

implying higher climate sensitivity (Tierney et al., 2025b), supported by reconstructions of more

global cooling from reduced CO2 at the Last Glacial Maximum (LGM; 19–23 thousand years ago)

(Tierney et al., 2020; Osman et al., 2021; Seltzer et al., 2021). However, these same reconstructions

indicate large-scale patterns of paleoclimate temperature change di!er strongly from modern projec-

tions. Climate feedbacks and sensitivity depend on temperature patterns (e.g., Armour et al., 2013;

Andrews et al., 2015; Gregory and Andrews, 2016; Ceppi and Gregory, 2017; Andrews and Webb,

2018), and such “pattern e!ects” must be accounted for when using paleoclimates to constrain

modern climate sensitivity (Chapter 2) (Cooper et al., 2024). Here we combine data-assimilation

reconstructions with atmosphere models to show Earth’s climate is more sensitive to Pliocene forc-

ing than modern CO2 forcing. Pliocene ice sheets, topography, and vegetation alter patterns of
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ocean warming and excite destabilizing cloud feedbacks, and LGM feedbacks are similarly amplified

by the North American ice sheet. Accounting for paleoclimate pattern e!ects produces a best esti-

mate (median) for modern climate sensitivity of 2.8→C, 66% range 2.4↓3.4→C (90% CI: 2.1↓4.0→C),

substantially reducing uncertainty and narrowing projections of 21st-century warming.

3.2 Introduction

The paleoclimate record constitutes a series of natural experiments with fundamental insights into

Earth’s climate sensitivity. Using paleoclimate evidence to constrain the modern sensitivity to rising

greenhouse-gas (GHG) concentrations requires accounting for di!erences in both climate forcings

and feedbacks between the past and modern climates (PALAEOSENS Project Members, 2012;

Sherwood et al., 2020; Cooper et al., 2024). A key driver of such feedback di!erences across past

climates is variation in the spatial pattern of sea-surface temperature, i.e., “paleoclimate pattern

e!ects” (Chapter 2) (Cooper et al., 2024). Pattern e!ects are variations in climate sensitivity and

feedbacks that depend on spatial patterns of temperature change (e.g., Armour et al., 2013; Andrews

et al., 2015; Gregory and Andrews, 2016; Ceppi and Gregory, 2017; Andrews and Webb, 2018),

and they arise in paleoclimate contexts when non-CO2 forcings (such as ice sheets, topography,

and vegetation) a!ect large-scale temperature patterns. Paleoclimate pattern e!ects can have

major impacts on estimates of modern climate sensitivity if non-CO2 forcings strongly influence

the temperature pattern, thereby producing climate feedbacks that di!er from those that govern

modern warming from GHG forcing (Chapter 2) (Cooper et al., 2024).

The Pliocene (5.3–2.6 Ma) is the closest analog to near-term warming (Burke et al., 2018). Its

mid-Piacenzian warm period (c. 3.3–3.0 Ma), hereafter “Pliocene,” is the most recent epoch with

atmospheric concentrations of CO2 (near 400 ppm) that are similar to present day (de la Vega

et al., 2020). The magnitude of Pliocene warming thus provides an important constraint on the

equilibrium climate sensitivity (ECS) of the modern climate, which is the steady-state response

of global-mean near-surface air temperature to a doubling of atmospheric CO2 from preindustrial

levels (Sherwood et al., 2020; Forster et al., 2021). Previous assessments of paleoclimate proxies

report approximately 3→C of global-mean Pliocene warming and an upper bound of 4→C relative to

preindustrial conditions (Sherwood et al., 2020; Forster et al., 2021). However, recent reconstruc-

tions find a much warmer Pliocene, with central estimates of 4→C (Tierney et al., 2025b; Annan
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et al., 2024). This revision to Pliocene warming suggests a much higher ECS of 4.8→C (Tierney

et al., 2025b), implying increased likelihood of realizing the worst-case projections of 21st-century

warming. But these globally resolved reconstructions tell us more than global means—they capture

the spatial pattern of Pliocene warming, and this spatial information is essential to constraining

modern ECS.

To infer modern ECS from Pliocene evidence, we must consider di!erences in both forcing

and feedbacks between the Pliocene and present climate. The Pliocene has both elevated GHG

levels (de la Vega et al., 2020; Hopcroft et al., 2020) as well as additional forcing from (i) reduced

ice sheets over West Antarctica and Greenland, (ii) increased vegetation, especially over northern

high latitudes, and (iii) changes in land-sea distribution (Salzmann et al., 2013; Dowsett et al.,

2016; PALAEOSENS Project Members, 2012; Sherwood et al., 2020). Previous work found that

the Pliocene’s global-mean warming is mostly attributable to CO2 (Lunt et al., 2012; Tierney

et al., 2019; Burton et al., 2023). However, modeling studies show that the non-CO2 forcings drive

distinct climate responses especially at regional scales (Dvorak et al., 2025; Burton et al., 2023;

Wei!enbach et al., 2023; Feng et al., 2022; Menemenlis et al., 2021; Lunt et al., 2012, 2010), and

that Pliocene temperature patterns may di!er substantially from those in response to modern CO2

forcing (Dvorak et al., 2025), thereby producing di!erent climate feedbacks. Accounting for such

pattern e!ects in the Last Glacial Maximum (LGM), a cold period 19 ↓ 23 ka, led to stronger

constraints on modern ECS (Chapter 2) (Cooper et al., 2024). The key question addressed here is:

would accounting for Pliocene pattern e!ects also strengthen constraints on modern ECS?

We quantify Pliocene pattern e!ects by synthesizing proxy data with climate models, and we

use these results to revise estimates of modern ECS and 21st-century warming. Spatially complete

reconstructions of the Pliocene (Tierney et al., 2025b; Annan et al., 2024) from paleoclimate data

assimilation (Hakim et al., 2016; Tierney et al., 2020; Osman et al., 2021) are used in numerical

simulations with five atmospheric general circulation models (AGCMs) to quantify relationships

between temperature patterns and climate feedbacks (e.g., Andrews et al., 2015; Cooper et al.,

2024). We analyze di!erences between feedbacks in the Pliocene compared to modern warming

from CO2. We then combine our Pliocene results with an investigation of the LGM (Chapter

2) (Cooper et al., 2024), and we quantify the impacts of the feedback di!erences on estimates of

modern ECS and projections of 21st-century warming.
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3.3 Paleoclimate pattern e!ects and modern ECS

Modern ECS, climate feedbacks, and paleoclimate pattern e!ects are related through the global-

mean energy balance,

#N = #F + ω#T, (3.1)

where #N is the change in top-of-atmosphere radiative balance; #F is the “e!ective” radiative

forcing, i.e., the change in net downward radiative flux after atmospheric adjustments to imposed

perturbations, excluding radiative responses to changing surface temperature (Forster et al., 2021);

ω is the net climate feedback (negative for stable climates); and #T is the change in near-surface

air temperature. All values are global means, and di!erences (#) are relative to the preindustrial

baseline. When the forcing is a doubling of preindustrial CO2 concentrations (2xCO2), and the

climate reaches equilibrium (#N = 0), the resulting #T is the modern ECS:

ECS = ↓#F2xCO2
/ω2xCO2

, (3.2)

where #F2xCO2
is the e!ective radiative forcing and ω2xCO2

is the net feedback from modern CO2

doubling. Increasingly negative values of ω indicate more-stable climates and lower ECS.

Paleoclimate pattern e!ects (#ω) are quantified as the di!erence between ω2xCO2
and a pale-

oclimate feedback, e.g., the Pliocene feedback (ωPlio), due to di!erences in the spatial patterns of

warming:

#ω = ω2xCO2
↓ ωPlio. (3.3)

#ω also can vary with global-mean temperature (e.g., Caballero and Huber, 2013; Sherwood et al.,

2020; Cooper et al., 2024). However, this temperature dependence can be omitted for the Pliocene

due to similar levels of global warming from Pliocene and 2xCO2 forcings (Sherwood et al., 2020),

and it is relatively small for LGM levels of global cooling (Cooper et al., 2024; Eisenman and

Armour, 2024).

Modern ECS and ω2xCO2
can be constrained by estimating ωPlio and #ω, then combining Equa-

tions 3.2 and 3.3:

ECS = ↓#F2xCO2
/(ωPlio +#ω). (3.4)

#ω depends on spatial patterns of Pliocene temperature anomalies, for which we use state-of-the-

art reconstructions from data assimilation (Tierney et al., 2025b; Annan et al., 2024) as boundary
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conditions for simulations using five AGCMs, as described in the following section.

3.4 Pliocene pattern e!ects constrained by data assimilation

3.4.1 Patterns of Pliocene sea-surface temperature

In Fig. 3.1, we compare the projected sea-surface temperature (SST) anomalies from modern

2xCO2, based on the multi-model mean of quasi-equilibrium simulations in LongRunMIP (Rugen-

stein et al., 2019), with the various Pliocene reconstructions from “plioDA” (Tierney et al., 2025b)

and Annan et al. (2024) that we use to quantify Pliocene pattern e!ects. The Pliocene patterns

include the best estimates from plioDA (Tierney et al., 2025b) and Annan et al. (2024), as well as

alternate plioDA reconstructions that test structural uncertainty and endmembers of the plioDA

ensemble (Fig. 3.1; Fig. 3.S1–S4) (Methods). The reconstructions use paleoclimate data assim-

ilation (Hakim et al., 2016; Tierney et al., 2020; Osman et al., 2021), which optimally combines

dynamical constraints from model “priors” with proxy data. Data assimilation results depend on

specific aspects of the methods, model priors (Amrhein et al., 2020), and observations.

To address reconstruction uncertainty, we analyze pattern e!ects across a wide range of possible

Pliocene temperature patterns that use di!erent assimilation methods, model priors, and subsets of

proxy data. Focusing on sensitivity to the model prior, the “PlioMIP2 Prior” version of plioDA uses

14 PlioMIP2 simulations (Haywood et al., 2020) to inform its prior. The “Perturbed Cloud Prior”

uses 21 simulations that are designed to capture Pliocene temperature gradients by substantially

altering models’ cloud physics (Burls and Fedorov, 2014; Erfani and Burls, 2019; Ford et al., 2022).

Focusing on sensitivity to the proxy network, the “PlioVar Data” version restricts data to the KM5c

interglacial (McClymont et al., 2020), and we also test endmembers of the plioDA ensemble (Fig.

3.S4) (Methods). Annan et al. (2024) and plioDA (Tierney et al., 2025b) have partially overlapping

proxy networks, model priors (both best estimates include simulations from PlioMIP2), and assim-

ilation methods (ensemble Kalman filter); however, there are substantial di!erences between the

two reconstruction e!orts in terms of the proxies included, model priors, and methods (e.g., forward

modeling of proxies in plioDA) that lead to di!erences in their results (Tierney et al., 2025b) (Fig.

3.1b,f).

Despite the substantial uncertainty in the details of the Pliocene SST patterns shown in Fig. 3.1,
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Figure 3.1: Patterns of sea-surface temperature (SST) anomalies and e!ective radiative forcing

(ERF). (a) Multi-model mean of modern SST response to 2xCO2 in quasi-equilibrium simulations

from LongRunMIP (Rugenstein et al., 2019). (b–f) Data-assimilation reconstructions from: (b)

plioDA best estimate (Tierney et al., 2025b); alternate plioDA using (c) only the PlioVar proxy

data representing the KM5c interglacial, (d) only the PlioMIP2 prior, or (e) only the perturbed-

cloud prior; and (f) best estimate from Annan et al. (2024). ERF from (g) modern 2xCO2 and

(h) Pliocene total forcing, including greenhouse gases, reduced Greenland and Antarctic ice sheets,

sea level, and vegetation (Dvorak et al., 2025). All panels show annual-mean anomalies, and local

values are divided by global means. Pliocene SSTs are infilled to modern coastlines.
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the reconstructions all have two common features that distinguish the Pliocene from the modern

response to 2xCO2: the Pliocene has amplified SST warming in the Southern Ocean and the North

Atlantic Ocean (Fig. 3.1; Fig. 3.S1). The distinct Pliocene warming pattern is driven by the distinct

spatial pattern of Pliocene forcing (Fig. 3.1h) (Dvorak et al., 2025), which arises from the Pliocene’s

non-CO2 forcings (changes in ice sheets, topography, and vegetation) and di!ers substantially from

the relatively uniform forcing produced by CO2 alone (Fig. 3.1g). The connection between the

non-CO2 Pliocene forcings and the SST patterns they produce has been demonstrated in coupled

climate models (Dvorak et al., 2025), which we return to in the Discussion.

3.4.2 Quantifying feedbacks and pattern e!ects

We estimate the net climate feedback, ω, for each warming pattern in Fig. 3.1 using AGCM

simulations with prescribed SST and sea-ice concentration (SIC) (Methods). Following Chapter 2

(Cooper et al., 2024), we begin with a control simulation using the preindustrial “baseline” pattern

(Osman et al., 2021). We repeat the AGCM simulations, changing only the SST and SIC to the

2xCO2 pattern from LongRunMIP (Fig. 3.1a) and to each of the Pliocene patterns (Fig. 3.1b–e;

SIC in Fig. 3.S2–S4). We hold the forcings constant at modern levels across all simulations to

isolate the radiative response to changes in surface temperature (Methods). For each simulation,

we calculate #N and #T relative to the preindustrial baseline, and the net feedback is ω = #N/#T

from Eq. 3.1 with #F = 0.

In Fig. 3.2, we compare ω2xCO2
with ωPlio and quantify Pliocene pattern e!ects (#ω). In all five

AGCMs, ωPlio is more positive (destabilizing) than ω2xCO2
, which means that the climate system

is more sensitive to Pliocene forcing than it is to modern 2xCO2 forcing. We test whether this

result is robust despite uncertainties in atmospheric model physics and Pliocene reconstructions

by running the simulations in CAM4, CAM5, CAM6, GFDL-AM4, and HadGEM3-GC3.1-LL, and

by testing three di!erent Pliocene patterns (Fig 3.1B,D,F) in all five AGCMs. We test additional

Pliocene patterns, including the 5th and 95th percentiles of the plioDA ensemble (Fig. 3.S4), in

CAM4 and CAM5 (Methods). Despite the uncertainties in Pliocene SST patterns and atmospheric

model physics, there is a clear Pliocene pattern e!ect with #ω < 0 (Fig. 3.2b), albeit with uncertain

magnitude.
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Figure 3.2: Net climate feedbacks (ω) and Pliocene pattern e!ect (#ω). Note that each legend

applies to both panels; di!erent atmospheric general circulation models (AGCMs) are denoted by

symbols, and di!erent Pliocene warming patterns are denoted by colors and borders. (a) Scatter

plot of ω2xCO2
versus ωPlio for each AGCM and Pliocene pattern, with ω2xCO2

= ωPlio shown as

solid line. (b) Pliocene pattern e!ect, #ω = ω2xCO2
↓ ωPlio, using values in panel a. Error bars for

plioDA represent endmembers of the ensemble reconstruction (Methods).

In summary, the Pliocene warming pattern excites more positive (destabilizing) climate feed-

backs compared to the 2xCO2 warming pattern (ωPlio>ω2xCO2
), i.e., the Pliocene pattern e!ect is

negative (#ω < 0). As will be shown below, the negative pattern e!ect indicates that positive feed-
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backs amplifying Pliocene warming do not play an equivalent role in the modern climate’s response

to greenhouse-gas forcing. Accounting for this negative Pliocene pattern e!ect would lead to lower

estimates of modern ECS and future warming (Eq. 3.4) (see Chapter 2; Cooper et al., 2024).

3.5 Discussion

3.5.1 Mechanisms responsible for Pliocene pattern e!ects

To diagnose the mechanisms contributing to more-positive climate feedbacks in the Pliocene, we first

use radiative kernels to assess each component feedback within the AGCM simulations (Methods)

(Soden et al., 2008). We find that the cloud feedback (ωcloud), namely the shortwave component

associated with low clouds, is the dominant driver of ωPlio > ω2xCO2
(Fig. 3.S5–S6). The combined

lapse-rate and water-vapor feedbacks make an additional contribution to more-positive ωPlio (Fig.

3.S5). Next, we inspect the spatial distribution of the Pliocene’s more-positive cloud feedbacks to

understand their source.

In Fig. 3.3, we compare the spatial patterns of ωcloud in the Pliocene versus 2xCO2. The

most pronounced di!erences are over the Southern Ocean (Indian sector) and the North Atlantic.

The zonal mean of #ωcloud (Fig. 3.3a) illustrates that the Pliocene’s extratropical cloud feedbacks

are responsible for ωPlio > ω2xCO2
, supported by extratropical lapse-rate feedbacks (Fig. 3.S9).

Comparing Fig. 3.3’s ωcloud with Fig. 3.1’s SST patterns (zonal mean SST in Fig. 3.S10), we

see that the regions with amplified Pliocene SST anomalies are approximately collocated with the

amplified Pliocene ωcloud. That is, amplified SST anomalies in the extratropics are responsible

for more-positive feedbacks in the Pliocene, which is consistent with a similar analysis of the Last

Glacial Maximum (Chapter 2) (Cooper et al., 2024). When SST warming is strongly amplified in

the extratropics compared to the SST warming in tropical regions of atmospheric deep convection

(e.g., the west Pacific warm pool), tropospheric stability is decreased and low-cloud cover is reduced,

which is a positive feedback (Ceppi and Gregory, 2017; Dong et al., 2019; Cooper et al., 2024).

Past studies of the Pliocene broadly emphasize the zonal SST in the tropical Pacific and meridional

temperature gradients (Wara et al., 2005; Fedorov et al., 2006; O’Brien et al., 2014; Brierley et al.,

2015; Burls and Fedorov, 2017; Tierney et al., 2019, 2025b), while we find specifically that the

amplification of warming in the North Atlantic and especially the Southern Ocean are the dominant
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Figure 3.3: Cloud feedbacks from modern CO2 forcing versus Pliocene warming. (a) Zonal means

of panels b, c, and their di!erence, #ωcloud; negative values of #ωcloud contribute to the negative

Pliocene pattern e!ect. (b–c) Spatial distributions of cloud feedbacks, ωcloud = #Nlocal/#T ,

where #Nlocal is the local anomaly in top-of-atmosphere radiation attributable to cloud feedbacks

(estimated with radiative kernels), and #T is the global-mean T anomaly. Multi-model mean of

(b) ωcloud using the LongRunMIP 2xCO2 pattern and (c) multi-pattern mean ωcloud from Pliocene

patterns in Fig. 3.1b,d,f (plioDA best estimate (Tierney et al., 2025b), alternate plioDA using

only the PlioMIP2 prior, and Annan et al. (2024) best estimate; these patterns were tested in all

atmosphere models). All panels show multi-model means across atmosphere models.
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features that distinguish Pliocene feedbacks from the modern response to 2xCO2.

The final and essential aspect of the mechanism is that amplified warming in the Southern

Ocean and North Atlantic is due to non-CO2 forcings (ice sheets, vegetation, and topography), as

shown in Fig. 3.S11. This attribution has been illustrated by simulations in coupled climate models

that separate the SST response to Pliocene CO2 versus non-CO2 forcings (e.g., Lunt et al., 2012;

Haywood et al., 2020; Burton et al., 2023; Dvorak et al., 2025). Pliocene warming in the North

Atlantic is amplified by the closure of ocean gateways (Bering Strait and Canadian Archipelago)

through changes in the Atlantic Meridional Overturning Circulation (AMOC) (Wei!enbach et al.,

2023), and it is further amplified by reductions in ice sheets (Menemenlis et al., 2021). Amplified

warming in the Southern Ocean is associated with the reduced Antarctic Ice Sheet and topography

through changes in ocean circulation (Wei!enbach et al., 2024; Dvorak et al., 2025). While amplified

warming of the Southern Ocean appears in all reconstructions (Fig. 3.1), its magnitude is uncertain

due to sparse proxy data, and this uncertainty makes a large contribution to our spread in #ω

(Fig. 3.S8–S10). Compared to coupled models, both the North Atlantic and Southern Ocean SST

features are even more pronounced in data-assimilation reconstructions constrained by paleoclimate

proxies (Fig. 3.1) (Tierney et al., 2025b; Annan et al., 2024). Thus coupled models are essential for

illustrating mechanisms of paleoclimate pattern e!ects, and incorporating observational constraints

through data assimilation is key to producing reliable SST patterns and constraining #ω.

While our comparison of the Pliocene versus modern 2xCO2 uses the LongRunMIP pattern

(Rugenstein et al., 2019), we note that there is substantial uncertainty in the projected SST pat-

tern from 2xCO2. However, because Pliocene and LGM pattern e!ects arise from how non-CO2

forcings shape paleoclimate temperature patterns, we expect conclusions about #ω to be rela-

tively insensitive to uncertainty in the SST pattern from CO2 forcing. Furthermore, Wang et al.

(2025) finds that the feedback uncertainty from CO2-forced SST patterns is only 10% of the total

feedback spread across di!erent models. That result emphasizes the importance of using multiple

atmospheric models to quantify #ω and that the feedback spread from 2xCO2 patterns is small

compared to that arising from the Pliocene reconstructions. We test whether results are sensitive

to the 2xCO2 pattern and find this uncertainty does not a!ect the conclusions (Methods).

In summary, non-CO2 forcings from ice sheets, topography, and vegetation altered the spatial

pattern of ocean warming, in turn producing positive cloud feedbacks in the extratropics that
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strongly amplified global warming during the Pliocene (Fig. 3.3). Because of these amplifying

feedbacks, more of the Pliocene warming was caused by non-CO2 forcings than previously thought,

meaning that less of the warming is attributable to elevated CO2 alone. Since these amplifying

feedbacks from non-CO2 forcing do not play a role in the modern response to 2xCO2 alone, we now

show that accounting for the Pliocene pattern e!ect lowers estimates of modern ECS and reduces

the likelihood of worst-case projections for 21st-century warming.

3.5.2 Modern climate sensitivity and 21st-century warming

To constrain modern ECS with paleoclimate evidence, we first infer climate feedbacks during a

paleoclimate period from changes in Earth’s energy budget, and then we account for di!erences

relative to the modern response to 2xCO2 (Sherwood et al., 2020; PALAEOSENS Project Members,

2012; Cooper et al., 2024). Measures of climate sensitivity depend on the timescale of interest, and

we follow Sherwood et al. (2020), hereafter “SW20,” in focusing on the 150-year timescale of

“e!ective” climate sensitivity (S), and in treating slow paleoclimate feedbacks, e.g., ice sheets, as

radiative forcings (PALAEOSENS Project Members, 2012).

First, we estimate ωPlio by applying Equation 3.1 to the Pliocene (Methods). We update #TPlio

from SW20’s values of 3.0±1.0 →C (1ε) to plioDA’s result of #TPlio = 4.1±0.6 →C (1ε). We also up-

date the non-GHG (greenhouse gas) e!ective radiative forcing to#FNonGHG = 1.7±1.0 (1ε) W m↑2

(Dvorak et al., 2025). Given that #FGHG ↔ 2.2 W m↑2 (Sherwood et al., 2020; Dvorak et al.,

2025), we have a central estimate of total #FPlio = 3.9 W m↑2 and ωPlio ↔ ↓1.0 W m↑2 K↑1

(Methods).

The novel aspect of the modern ECS constraint in this study is the inclusion of paleoclimate

pattern e!ects for the Pliocene (#ω; Eq. 3.3 and 3.4) and the synthesis with pattern e!ects for

the Last Glacial Maximum (Chapter 2) (Cooper et al., 2024). We combine uncertainty across

SST patterns and atmospheric models (Fig. 3.2; Methods), which produces a central estimate for

Pliocene pattern e!ects of #ω = ↓0.37±0.32 (1ε) W m↑2 K↑1. We adapt the Bayesian framework

of SW20 to include Pliocene #ω, following Chapter 2 (Cooper et al., 2024) (Methods).

In Fig. 3.4a, we show the S likelihoods from Pliocene evidence alone. For comparison, we include

the original SW20 results and the likelihood with updated Pliocene global-mean #T and #FNonGHG
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Figure 3.4: Modern climate sensitivity and 21st-century warming, accounting for paleoclimate

pattern e!ects (#ω). (a) Pliocene-only likelihoods (dotted) from SW20 (Sherwood et al., 2020);

(gray) including updates to #TPlio and #FPlio but excluding pattern e!ects (#ω); (orange) fully

updated SW20 including #ω. (b) Posterior probability density functions (PDFs) after combining

lines of evidence: (gray, white fill) SW20, (gray) SW20 with updated paleoclimate #T and #F but

excluding #ω, (orange) including #ω only for the Pliocene, (blue) #ω only for the Last Glacial

Maximum (LGM) (Cooper et al., 2024), and (orange, blue fill) Full Update including Pliocene and

LGM #ω. Panels a–b show e!ective climate sensitivity (S), as in SW20. (c) Projected global

warming from the FaIR model (Smith et al., 2024), measured as mean anomaly over 2081–2100

relative to 1850–1900 mean, using climate sensitivity distributions from IPCC AR6 (Forster et al.,

2021), SW20, and the Full Update in panel b. Line caps indicate 5th to 95th percentiles, dots

indicate 66% likely range, box indicates 25th to 75th percentiles, and line indicates median.
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but excluding Pliocene pattern e!ects. As seen in Fig. 3.4a, the updates from the global-mean

information alone (excluding #ω) suggest a much higher ECS (Tierney et al., 2025b). However, the

spatial information in the Pliocene reconstructions—quantified as #ω—has a larger and opposite

impact. Including #ω shifts the maximum likelihood from 3.7→C to 2.7→C and substantially reduces

the high tail of the distribution.

We now revise the best estimate for modern ECS by combining the Pliocene with the additional

lines of evidence in SW20: the Last Glacial Maximum (LGM), the historical record (c. 1870–

present), and process understanding (Methods) (Fig. 3.4b). We first show SW20’s results, then we

include paleoclimate updates only to global-mean quantities (i.e., excluding #ω), which increases

ECS substantially. We then include #ω from only the Pliocene or LGM (Cooper et al., 2024),

and finally we combine our results for Pliocene and LGM #ω to provide a best estimate that

fully accounts for paleoclimate pattern e!ects and their uncertainties. Once again, global-mean

paleoclimate updates increase ECS, while the spatial information from pattern e!ects is more

impactful and leads to much stronger overall constraints, particularly for the upper bound. The

revised best estimate (median) for modern ECS becomes 2.8→C, with a 66% range of 2.4 ↓ 3.4→C

(90% CI: 2.1↓ 4.0→C) (Fig. 3.4b; Table 3.S3). This range represents a major update to the upper

bounds in SW20 (Sherwood et al., 2020) and the IPCC Sixth Assessment report (AR6) (Forster

et al., 2021), while our lower bound confirms those assessments. For comparison with SW20’s

robustness tests, we find a 66% robust range of 2.6 ↓ 3.8→C (90% CI : 2.3 ↓ 4.6→C), which also

represents a much stronger constraint compared to the 95th percentile of 5.7→C in SW20’s robust

range.

Importantly, our updates to modern ECS also reduce uncertainty in projections of 21st-century

warming. Fig. 3.4c shows the 2081–2100 mean warming relative to 1850–1900 projected by the

FaIR model (Smith et al., 2024), a climate emulator that produced projections for IPCC AR6,

under the SSP2-4.5 emissions scenario (Forster et al., 2021). FaIR’s large ensemble is calibrated

to match the historical record through 2022 while sampling the full range of uncertainty in ECS

(Smith et al., 2024). We first revise the FaIR ensemble’s ECS distribution to match SW20, which

produces a minor change (Methods). We then use our fully updated ECS distribution with the

FaIR model (Fig. 3.4b), which yields a median of 2.5→C for end-of-century warming (relative to

preindustrial) and substantially reduces uncertainty in the upper bound of warming projections,
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with a 66% likely range of 2.1↓ 2.9→C (90% CI: 1.9↓ 3.2→C).

Pliocene pattern e!ects arise from changes in ice sheets, vegetation, and topography that amplify

SST warming in the extratropics, in turn leading to cloud feedbacks that further amplify global

warming. Recent work on the Last Glacial Maximum also found that ice sheets amplify extratropical

SST cooling, similarly leading to positive cloud feedbacks (Cooper et al., 2024). The modern climate

feedback from CO2 alone (in the absence of ice sheet, vegetation, and topography changes) is more

stabilizing than the feedbacks associated with the Pliocene and LGM.

Updating global mean Pliocene and LGM temperatures based on the latest state-of-the-art

reconstructions, while neglecting pattern e!ects, appears to suggest substantially higher estimates

of climate sensitivity compared to SW20 (Sherwood et al., 2020) and IPCC AR6 (Forster et al.,

2021). However, our results show that including spatial information from those same reconstructions

leads to the opposite conclusion, such that paleoclimates now provide much stronger constraints

on the modern climate’s sensitivity to CO2 and projected warming. We note that our 21st-century

projections assume ice sheets will not be lost this century. An important corollary to our results

is that a major shift in the modern warming pattern, e.g., caused by loss of the West Antarctic

Ice Sheet (Dvorak et al., 2025; Wei!enbach et al., 2024; Lunt et al., 2010), could activate positive

feedbacks on longer timescales in the modern climate similar to those that amplified global warming

during the Pliocene.

3.6 Methods

3.6.1 AGCM simulations

Following Chapter 2 (Cooper et al., 2024), estimating paleoclimate#ω (Eq. 3.3) in AGCMs requires

three simulations that di!er only in their SST/SIC boundary conditions while all other forcings are

constant at modern levels, similar to “amip-piForcing” simulations (Andrews, 2014; Gregory and

Andrews, 2016).

The three categories of AGCM simulations are: (a) Preindustrial baseline, for which we use the

Late Holocene (0↓ 4 ka) (Osman et al., 2021); (b) 2xCO2, for which we use the multi-model mean

of quasi-equilibrium 2xCO2 simulations in LongRunMIP (Rugenstein et al., 2019); (c) Pliocene,

for which we use the various reconstructions described in the main text (Fig. 3.1; Fig. 3.S1–S3).
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In CAM4 and CAM5, we also test the 5th and 95th percentiles of the plioDA ensemble (Fig. 3.S4);

ensemble members are ranked by estimating ωPlio with CAM4 Green’s functions (Dong et al., 2019).

SST/SIC boundary conditions are prepared as described in Chapter 2 (Cooper et al., 2024). We

use plioDA’s SIC for Annan et al. (2024), as no SIC is provided by the latter; this approach is

supported by similar #TPlio in both reconstructions.

For each AGCM, we compute anomalies in simulations (b) and (c) relative to (a). Simulations

are 30 years, and we analyze means over the final 25 years for CAM4 (2→ resolution), CAM5.3 (2→),

CAM6.0 (2→) (Danabasoglu et al., 2020), and HadGEM3-GC3.1-LL (N96, 135 km) (Williams et al.,

2017), or the final 30 of 31 years for GFDL-AM4.0 (C96, 100 km) (Held et al., 2019). Results are

included in Tables 3.S1–S2. As described in Chapter 2 (Cooper et al., 2024), we test sensitivity of

#ω to the 2xCO2 pattern by computing an alternate #ωAlt
150yr, which uses the 150-year regression

of abrupt CO2-forcing simulations in the parent coupled models corresponding to each AGCM

instead of our ω2xCO2
. Each coupled model produces a distinct warming pattern over the 150-year

period, thus #ωAlt
150yr samples uncertainty in CO2-warming patterns. This test confirms our finding

of #ω < 0 (Table 3.S1–S2) and produces ECS constraints that agree with our main result within

0.1→C (Table 3.S3). We decompose ω into component feedbacks (Planck, lapse rate, water vapor,

surface albedo, shortwave cloud, and longwave cloud) using CAM5 radiative kernels (Pendergrass

et al., 2018), following Soden et al. (2008) (Fig. 3.S5–S8).

3.6.2 Constraining modern climate sensitivity

Modern climate sensitivity is the steady-state response of global-mean T to doubling preindustrial

CO2 concentrations, including only the feedbacks acting on an approximate 150-year timescale,

i.e., assuming fixed ice sheets and vegetation. This metric, called “e!ective climate sensitivity” to

distinguish it from true equilibrium, is termed S in SW20 (Sherwood et al., 2020) and hereafter.

To infer S from Pliocene evidence, we build on SW20’s equation of Pliocene energy balance by

including the updates described below (distribution percentiles provided in Table 3.S3).

#TPlio =
↓#FCO2

(1 + fCH4
) +#FNonGHG

ω2xCO2

1+ε
+#ω

(3.5)

(i)Our main update is incorporating Pliocene#ω as#ω → N (µ = ↓0.37,ε = 0.32) W m↑2 K↑1.

We estimate µ and ε for #ω by combining the spread across AGCMs and reconstructions using the
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bootstrap approach in Chapter 2 (Cooper et al., 2024), with plioDA’s best estimate as the reference

value for di!erences in CAM4 and CAM5.

(ii) Pliocene forcing is updated based on the recent estimate of e!ective radiative forcing from

non-GHG sources (#FNonGHG), including ice sheets, vegetation, and land-sea distribution (Dvorak

et al., 2025). We assign #FNonGHG → N (1.7, 1.0) W m↑2 K↑1, which assumes a 1ε uncertainty

that approximately maintains the original SW20 uncertainty in total #FPlio. For reference, total

#FPlio (numerator of Eq. 3.5) is 3.9 ± 1.2 (1ε) W m↑2, with #FCO2
↔ 2.2 W m↑2. We note

there is substantial uncertainty in the components of #FPlio, which merit further study (Haywood

et al., 2024; Hopcroft et al., 2020; Grant et al., 2019; Sagoo and Storelvmo, 2017; Dowsett et al.,

2016; Dutton et al., 2015; Unger and Yue, 2014).

(iii) #TPlio is updated from 3.0 ± 1.0→C (1ε) in SW20 to plioDA’s constraint of #TPlio →

N (4.1, 0.6) →C (Tierney et al., 2025b), which is supported by the estimate in Annan et al. (2024)

of 3.9± 1.1→C (1ε).

From SW20 (Sherwood et al., 2020), the remaining parameters in Equation 3.5 are: CO2 forc-

ing of #FCO2
= #F2xCO2

↑ ln( [CO2]
284ppm)/ ln(2), where [CO2] → N (375, 25) ppm and #F2xCO2

→

N (4.0, 0.3) W m↑2; a scaling factor for methane and N2O forcing, 1+fCH4
, with fCH4

→ N (0.4, 0.1);

and a timescale transfer factor between quasi-equilibrium and the 150-year S timescale, 1 + ϑ,

to account for feedbacks becoming more positive at longer timescales, with ϑ → N (0.06, 0.2)

based on LongRunMIP (Rugenstein et al., 2019). Finally, modern climate sensitivity is S =

↓#F2xCO2
/ω2xCO2

(Sherwood et al., 2020).

We also use an alternate version of the #ω in (i) estimated by comparing our paleoclimate

AGCM simulations with feedbacks from 150-year regression of abrupt CO2-forcing simulations in

the parent coupled models of each AGCM. Each coupled model produces a distinct warming pattern,

thereby sampling uncertainty in the pattern of warming from CO2. With ωCO2

150yr representing the

regression feedback, we estimate Pliocene #ωAlt
150yr = ωCO2

150yr ↓ ωPlio, and we use the same bootstrap

approach in (i) to find Pliocene #ωAlt
150yr → N (µ = ↓0.44,ε = 0.40) W m↑2 K↑1. Because #ωAlt

150yr

represents a comparison with the 150-year regression feedback rather than quasi-equilibrium simu-

lations, the denominator of Equation 3.5 becomes (ω2xCO2
+#ωAlt

150yr)/(1 + ϑ) when using #ωAlt
150yr

instead of our standard #ω. Note that the percentiles of the final S distribution agree within 0.1→C

when using #ωAlt
150yr (Table 3.S3).
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There are advantages to our formulation of the Pliocene energy balance (Eq. 3.5) compared

to SW20’s Equation 23. First, the Pliocene is now consistent with the LGM, as #FNonGHG is

now added directly rather than estimated by multiplying #FCO2
by a scale factor, 1 + fESS ,

representing Earth system sensitivity (Lunt et al., 2010; PALAEOSENS Project Members, 2012).

Second, fESS conflates forcings and feedbacks, and estimating fESS requires free-running coupled

simulations that have inaccurate warming patterns (Dvorak et al., 2025). Instead of using fESS , our

Equation 3.5 separately includes e!ective radiative forcing, #FNonGHG, from AGCM simulations

with paleoenvironmental boundary conditions informed by proxies for ice extent, vegetation, and

topography (Dvorak et al., 2025; Zhu and Poulsen, 2021), and paleoclimate pattern e!ects, from

AGCM simulations with SST/SIC patterns constrained by data assimilation (Cooper et al., 2024).

Climate sensitivity PDFs are summarized in Table 3.S3. We calculate likelihoods and PDFs for S

using SW20’s Bayesian framework (Sherwood et al., 2020). This framework quantitatively combines

our findings with additional lines of evidence, and the methods can be continually developed in

ongoing e!orts (Marvel and Webb, 2025; Sherwood and Forest, 2024). Our findings would have the

same directional impact on other assessments of ECS and modern warming (Forster et al., 2021;

Kaufman and Masson-Delmotte, 2024).

In Fig. 3.4 and Table 3.S3, we show S with and without updates (i), (ii), and (iii). For

the LGM evidence in Fig. 3.4b, we include updated #TLGM → N (↓6, 1) →C and LGM #ω →

N (↓0.37, 0.23) W m↑2 K↑1 (Cooper et al., 2024). We also use ωCO2

150yr in Table 3.S1 to estimate LGM

#ωAlt
150yr → N (µ = ↓0.42,ε = 0.34) W m↑2 K↑1. While SW20’s framework generally assumes lines

of evidence are independent, our estimates of Pliocene and LGM pattern e!ects are interrelated.

We use the same AGCMs, and the reconstruction methods are partially overlapping. To account for

the relationship between Pliocene and LGM #ω estimates, we identify pairs of estimates that use

similar reconstruction methods and the same AGCM (Table 3.S4). From these pairs, we estimate

the Pearson correlation (r) and covariance for #ω to be r = 0.56 and cov = 0.0123 [W m↑2 K↑1]2.

For #ωAlt
150yr, we estimate r = 0.87 and cov = 0.0562 [W m↑2 K↑1]2. We account for the shared

error covariance by drawing correlated values for LGM and Pliocene #ω from bivariate normal

distributions. However, the S constraints are insensitive to the covariance, as our Full Update

percentiles (Table 3.S3) change by less than 0.1→C if we assume zero covariance. This result aligns

with the dependence tests in SW20, which also found relatively small impacts from codependencies
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(Sherwood et al., 2020).

We include results corresponding to SW20’s robustness test, which assumes a uniform prior on S

from 0 to 20→C instead of the baseline prior of uniform ω from ↓10 to 10 W m↑2 K↑1, in Table 3.S3.

The robustness test yields a median of 3.1→C and 66% range of 2.6↓3.8→C (90% CI: 2.3↓4.6→C). As

for our main result using the baseline prior, this represents a substantial narrowing of uncertainty

compared to the robust ranges in SW20. For illustrative purposes, we also include posterior PDFs

considering only the Pliocene evidence and assuming the uniform-S prior. The PDF from the

Pliocene alone has a median of 3.8→C and 66% range of 2.4↓ 7.2→C (90% CI: 1.9↓ 12.9→C).

3.6.3 Projections of 21st-century warming

We analyze warming projections through 2100 under SSP2–4.5 (Forster et al., 2021) from the

FaIR model v1.4.1, calibrated to match historical records as in IPCC AR6 but with updated

constraints through 2022 (Smith et al., 2024). From FaIR, we have a large ensemble of global-

mean temperatures from 1850–2100, and each member has an associated ECS. For each ensemble

member, we compute the mean warming over 2081–2100 relative to the 1850–1900 mean. We then

resample the ensemble with replacement to match the specified ECS distributions from SW20 and

from our updated paleoclimate-constrained ECS. This resampling produces revised distributions of

projected warming that are associated with the specified ECS distributions (Fig. 3.4).

3.7 Appendix: Supplemental information

SI Appendix Figures 3.S1–S11 and Tables 3.S1–S4.
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Figure 3.S1: Di!erences between the 2xCO2 pattern of sea-surface temperature (SST) anomalies

and Pliocene patterns of SST anomalies. Panels correspond to Figure 3.1 of Main Text. Before

taking the di!erences, each pattern’s local anomalies are divided by its global-mean SST anomaly

to emphasize the spatial patterns. Red regions indicate stronger relative amplification of warming

in the LongRunMIP 2xCO2 pattern (Rugenstein et al., 2019), while blue regions indicate stronger

relative amplification of Pliocene warming. See Figure 3.S10 for zonal-mean SST anomalies and

pattern di!erences.
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Figure 3.S2: Sea-ice concentration (SIC): LongRunMIP 2xCO2 and Pliocene reconstructions. Pan-

els show annual means. Note that plioDA sea ice is used for the Annan et al. (2024) reconstruction.
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Figure 3.S3: Sea-ice concentration (SIC) anomalies: LongRunMIP 2xCO2 and Pliocene recon-

structions relative to preindustrial baseline. Panels show annual-mean di!erences relative to the

preindustrial (Late Holocene) baseline (Osman et al., 2021). Note that plioDA sea ice is used for

the Annan et al. (2024) reconstruction.
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Figure 3.S4: 5th and 95th percentile ensemble members from plioDA reconstruction (Tierney et al.,

2025b). (a–b) Sea-surface temperature (SST) anomalies and (c–d) sea-ice concentration (SIC) for

ensemble members with the 5th percentile net feedback (more negative, stable climate) and 95th

percentile net feedback (more positive, less stable climate). Ensemble members are ranked using

CAM4 Green’s functions (Dong et al., 2019).
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Figure 3.S5: Kernel decomposition of radiative feedbacks (ω). Note that each legend applies to both

panels: di!erent sea-surface temperature and sea ice patterns are distinguished by colors/borders,

while the di!erent atmospheric general circulation models (AGCMs) are distinguished by symbol

shapes. (a) Decomposition of feedbacks using radiative kernels (Soden et al., 2008) from CAM5

(Pendergrass et al., 2018). LR+WV represents the lapse rate and water vapor feedbacks. (b)

Pattern e!ects (#ω = ω2xCO2
↓ ωPlio) for each component feedback in panel a.
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Figure 3.S6: Decomposition of radiative feedbacks (ω) from direct model outputs for clear-sky

radiation and cloud radiative e!ects (CRE). Results are separated into longwave (LW) and short-

wave (SW) components. (a) Decomposition of feedbacks, and (b) decomposition of pattern e!ects

(#ω = ω2xCO2
↓ ωPlio).
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Figure 3.S7: Spatial pattern of local radiative feedbacks (ω). Local feedbacks are calculated as

#N/#T , where#N is the local anomaly in top-of-atmosphere radiation, and#T is the global-mean

anomaly in near-surface air temperature. Multi-model mean, including CAM4, CAM5, CAM6, and

GFDL-AM4 from (a) LongRunMIP 2xCO2 (Rugenstein et al., 2019), (b) plioDA (Tierney et al.,

2025b), and (c) (Annan et al., 2024).
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Figure 3.S8–3.S9 (shown on following pages): Zonal mean of local radiative feedbacks (ω) and

pattern e!ects, #ω = ω2xCO2
↓ ωPlio. Local feedbacks are calculated as #N/#T , where #N is the

local anomaly in top-of-atmosphere radiation, and #T is the global-mean anomaly in near-surface

air temperature. (a) Feedbacks, ω, in CAM5 using various patterns of sea-surface temperature

(SST) and sea ice, and (b) Pattern e!ects, #ω = ω2xCO2
↓ ωPlio, in CAM5 corresponding to panel

a. (c–d) Repeat of panels a–b with results from multiple models (CAM4, CAM5, CAM6, and

GFDL-AM4) and a subset of SST and sea ice patterns.
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Figure 3.S8: See caption on preceding page.
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Figure 3.S9: See caption that precedes Figure 3.S8.
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Figure 3.S10: Zonal-mean patterns of temperature anomalies. (A) Normalized T from various

patterns and (b) di!erences versus LongRunMIP 2xCO2 pattern. (c–d) Repeats panels a and

b for SST. Note that a–b show AGCM output from CAM5, whereas c–d show input boundary

conditions for all AGCMs.
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Figure 3.S11: Sea-surface temperature (SST) response to Pliocene forcings in CESM2.1. Results

shown are from (Dvorak et al., 2025). (a–c) Patterns of SST anomalies (normalized by global-

mean anomalies) relative to preindustrial control from (a) all Pliocene forcings, (b) Non-GHG

forcings including ice sheets, vegetation, topography, and bathymetry, and (c) CO2 concentration

of 400 ppm, which accounts for both CO2 and methane forcing. (d) Di!erence between SST

response to CO2 versus non-GHG forcing, represented as panel cminus panel b; red regions indicate

stronger relative amplification of warming from CO2, while blue regions indicate stronger relative

amplification from non-GHG forcings. In all panels, regions of preindustrial sea ice are masked

in light gray. The CESM2 simulations follow the PlioMIP2 protocol (Haywood et al., 2020; Feng

et al., 2022).
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Table 3.S1: All units are W m↑2 K↑1. Pliocene pattern e!ects, #ω = ω2xCO2
↓ ωPlio, from three

patterns of reconstructed Pliocene SST and sea ice in various AGCMs (CAM4 coupled to CLM4.5,

CAM5.3 coupled to CLM5.0, CAM6.0 coupled to CLM5.0, GFDL-AM4.0, and HadGEM3-GC3.1-

LL). Alternate values for Pliocene pattern e!ects, #ωAlt
150yr = ωCO2

150yr ↓ ωPlio, are shown using 150-yr

regression of abrupt-4xCO2 simulations (abrupt-2xCO2 is used for CESM2-CAM6 to avoid issues

with the ice nucleation scheme and cloud microphysics timestep that impact the feedback diag-

nosed from the 4xCO2 simulation (Zhu et al., 2022; Burls and Sagoo, 2022) from coupled models

corresponding to each AGCM (Andrews et al., 2022).

Model Pattern #ω ωPlio ω2xCO2
#ωAlt

150yr ωCO2

150yr

CAM4 plioDA -0.57 -0.82 -1.39 -0.41 -1.23

CAM4 plioDA: PlioMIP2 Prior -0.18 -1.21 -1.39 -0.02 -1.23

CAM4 Annan24 -0.26 -1.13 -1.39 -0.10 -1.23

CAM5 plioDA -0.48 -0.48 -0.96 -0.67 -1.15

CAM5 plioDA: PlioMIP2 Prior -0.10 -0.86 -0.96 -0.29 -1.15

CAM5 Annan24 -0.24 -0.72 -0.96 -0.43 -1.15

CAM6 plioDA -0.69 -0.13 -0.83 -1.08 -1.21

CAM6 plioDA: PlioMIP2 Prior -0.17 -0.65 -0.83 -0.56 -1.21

CAM6 Annan24 -0.43 -0.39 -0.83 -0.82 -1.21

GFDL-AM4 plioDA -0.44 -0.49 -0.93 -0.37 -0.86

GFDL-AM4 plioDA: PlioMIP2 Prior -0.12 -0.81 -0.93 -0.05 -0.86

GFDL-AM4 Annan24 -0.28 -0.65 -0.93 -0.21 -0.86

HadGEM3 plioDA -0.20 -0.44 -0.64 -0.19 -0.63

HadGEM3 plioDA: PlioMIP2 Prior -0.02 -0.62 -0.64 -0.01 -0.63

HadGEM3 Annan24 -0.24 -0.41 -0.64 -0.22 -0.63

CAM4 mean -0.34 -1.05 -1.39 -0.18 -1.23

CAM5 mean -0.27 -0.68 -0.96 -0.47 -1.15

CAM6 mean -0.43 -0.39 -0.83 -0.82 -1.21

GFDL-AM4 mean -0.28 -0.65 -0.93 -0.21 -0.86

HadGEM3 mean -0.15 -0.49 -0.64 -0.14 -0.63

mean Annan24 -0.29 -0.66 -0.95 -0.36 -1.02

mean plioDA -0.48 -0.47 -0.95 -0.54 -1.02

mean plioDA: PlioMIP2 Prior -0.12 -0.83 -0.95 -0.18 -1.02

mean mean -0.30 -0.65 -0.95 -0.36 -1.02

1ε 1ε 0.19 0.29 0.31
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Table 3.S2: Pliocene pattern e!ects, #ω = ω2xCO2
↓ ωPlio, from various patterns of reconstructed

Pliocene SST and sea ice in CAM4 and CAM5. Global-mean anomalies for SST, near-surface air

temperature (T), and top-of-atmosphere radiative imbalance (N) are shown for reference. Alternate

values for Pliocene pattern e!ects, #ωAlt
150yr = ωCO2

150yr ↓ ωPlio, are shown using 150-yr regression

feedbacks (Table 3.S1).

Units Wm↑2K↑1 Wm↑2K↑1 K K Wm↑2 Wm↑2K↑1

Model Pattern #ω ω #SST #T #N #ωAlt
150yr

CAM4 plioDA -0.57 -0.82 3.00 3.90 -3.20 -0.41

CAM4 plioDA: PlioVar Data -0.47 -0.92 2.89 3.78 -3.48 -0.31

CAM4 plioDA: PlioMIP2 Prior -0.18 -1.21 2.94 3.86 -4.67 -0.02

CAM4 plioDA: Cloud Prior -0.63 -0.76 2.83 3.68 -2.79 -0.47

CAM4 plioDA: 5% -0.01 -1.39 3.96 4.88 -6.77 0.16

CAM4 plioDA: 95% -1.01 -0.38 3.29 4.02 -1.55 -0.85

CAM4 Annan24 -0.26 -1.13 2.82 3.72 -4.21 -0.10

CAM4 mean -0.45 -0.94 3.10 3.98 -3.81 -0.29

CAM4 1ε 0.33 0.33 0.41 0.41 1.65 0.33

CAM4 2xCO2: LongRunMIP -1.39 2.35 3.16 -4.40

Model Pattern #ω ω #SST #T #N #ωAlt
150yr

CAM5 plioDA -0.48 -0.48 3.00 3.98 -1.90 -0.67

CAM5 plioDA: PlioVar Data -0.43 -0.53 2.89 3.85 -2.02 -0.62

CAM5 plioDA: PlioMIP2 Prior -0.10 -0.86 2.94 3.96 -3.40 -0.29

CAM5 plioDA: Cloud Prior -0.56 -0.39 2.83 3.75 -1.48 -0.76

CAM5 plioDA: 5% 0.13 -1.09 3.96 4.99 -5.42 -0.06

CAM5 plioDA: 95% -0.80 -0.16 3.29 4.10 -0.65 -0.99

CAM5 Annan24 -0.24 -0.72 2.82 3.78 -2.71 -0.43

CAM5 mean -0.35 -0.60 3.10 4.06 -2.51 -0.55

CAM5 1ε 0.31 0.31 0.41 0.43 1.55 0.31

CAM5 2xCO2: LongRunMIP -0.96 2.35 3.21 -3.07
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Table 3.S3: Posterior distributions of climate sensitivity (S). “Combined Evidence” assumes the

Baseline Prior, ω → Unif(↓10, 10) W m↑2 K↑1, and includes Process Understanding, Historical

Evidence, and Paleoclimate Evidence from the Last Glacial Maximum (LGM) and Pliocene. The

Robust Range also combines lines of evidence but assumes a Uniform S Prior, S → Unif(0, 20) K

(Sherwood et al., 2020). “Pliocene Only” considers only Pliocene evidence and assumes the Uniform

S Prior. All uncertainties shown are 1ε values. Table structure is comparable to SW20’s Table 10

(Sherwood et al., 2020).

Combined Evidence (Baseline Prior) 5th 17th 50th 83rd 95th Mean #TPlio #FPlio

NonGHG
#TLGM

SW20: Original 2.3 2.6 3.1 3.9 4.7 3.2 3.0 ± 1.0 fESS -5 ± 1

+ Update #TLGM 2.3 2.7 3.2 4.1 5.0 3.4 3.0 ± 1.0 fESS -6 ± 1

+ Update #TPlio 2.6 2.9 3.6 4.6 5.6 3.8 4.1 ± 0.6 fESS -6 ± 1

+ Update #FPlio

NonGHG
2.5 2.8 3.4 4.3 5.2 3.6 4.1 ± 0.6 1.7 ± 1.0 -6 ± 1

Include only LGM #ω 2.3 2.6 3.0 3.7 4.4 3.2 4.1 ± 0.6 1.7 ± 1.0 -6 ± 1

Include only Pliocene #ω 2.3 2.6 3.1 3.9 4.7 3.3 4.1 ± 0.6 1.7 ± 1.0 -6 ± 1

Full Update incl. Paleo #ω 2.1 2.4 2.8 3.4 4.0 2.9 4.1 ± 0.6 1.7 ± 1.0 -6 ± 1

Alt. Update incl. Paleo #ωAlt
150yr 2.1 2.4 2.8 3.5 4.1 3.0 4.1 ± 0.6 1.7 ± 1.0 -6 ± 1

Combined, Robust Range (Unif. S Prior) 5th 17th 50th 83rd 95th Mean #TPlio #FPlio

NonGHG
#TLGM

SW20: Original Robust Range (Unif. S) 2.4 2.8 3.5 4.5 5.7 3.7 3.0 ± 1.0 fESS -5 ± 1

+ Update #T, #FPlio

NonGHG
(Unif. S) 2.6 3.0 3.8 4.9 6.2 4.0 4.1 ± 0.6 1.7 ± 1.0 -6 ± 1

Full Update incl. Paleo #ω (Unif. S) 2.3 2.6 3.1 3.8 4.6 3.2 4.1 ± 0.6 1.7 ± 1.0 -6 ± 1

Alt. Update incl. Paleo #ωAlt
150yr (Unif. S) 2.3 2.6 3.1 3.9 4.8 3.3 4.1 ± 0.6 1.7 ± 1.0 -6 ± 1

Pliocene Only (Unif. S Prior) 5th 17th 50th 83rd 95th Mean #TPlio #FPlio

NonGHG

SW20: Original 1.6 2.4 4.0 6.8 10.1 4.7 3.0 ± 1.0 fESS

+ Update #TPlio 2.9 3.8 5.6 8.6 12.3 6.3 3.0 ± 1.0 fESS

+ Update #FPlio

NonGHG
2.5 3.2 4.7 7.4 11.2 5.4 4.1 ± 0.6 1.7 ± 1.0

Include Pliocene #ω 1.9 2.4 3.8 7.2 12.9 5.0 4.1 ± 0.6 1.7 ± 1.0

Alt. Pliocene #ωAlt
150yr 1.8 2.4 3.8 8.3 14.8 5.3 4.1 ± 0.6 1.7 ± 1.0

Units in →C; #F units in W m↑2.
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Table 3.S4: Paired estimates of Pliocene and LGM pattern e!ects, which use similar methods for

data assimilation and the same AGCMs. The pairs are used to estimate the Pearson correlation

and covariance between estimates of Pliocene and LGM pattern e!ects (Cooper et al., 2024). For

the standard #ω, r = 0.56 and cov = 0.0123 [W m↑2 K↑1 ]2. For #ωAlt
150yr, r = 0.87 and cov =

0.0562 [W m↑2 K↑1 ]2. Table units are W m↑2 K↑1. LGM results use updated CESM2.1 ωAlt
150yr in

Table 3.S1.

AGCM Plio Pattern LGM Pattern #ωPlio #ωLGM #ωAlt150
Plio #ωAlt150

LGM

CAM4 plioDA LGMR -0.57 -0.45 -0.41 -0.21

CAM5 plioDA LGMR -0.48 -0.31 -0.67 -0.41

CAM6 plioDA LGMR -0.69 -0.63 -1.08 -1.02

AM4 plioDA LGMR -0.44 -0.33 -0.37 -0.27

HadGEM3 plioDA LGMR -0.20 -0.27 -0.19 -0.29

CAM4 Annan Annan -0.57 -0.29 -0.10 -0.06

CAM5 Annan Annan -0.48 -0.09 -0.43 -0.18

CAM4 plioDA: Cloud Prior LGMR -0.63 -0.45 -0.47 -0.21

CAM5 plioDA: Cloud Prior LGMR -0.56 -0.31 -0.76 -0.41

CAM4 plioDA: Cloud Prior lgmDA -0.63 -0.69 -0.47 -0.45

CAM5 plioDA: Cloud Prior lgmDA -0.56 -0.51 -0.76 -0.61

CAM4 plioDA lgmDA -0.57 -0.69 -0.41 -0.45

CAM5 plioDA lgmDA -0.48 -0.51 -0.67 -0.61
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Chapter 4

MONTHLY SEA-SURFACE TEMPERATURE, SEA ICE, AND SEA-LEVEL
PRESSURE OVER 1850–2023 FROM COUPLED DATA ASSIMILATION

This work is in re-review at Journal of Climate as: Cooper, V. T., Hakim, G. J., Armour, K. C.

Monthly Sea-Surface Temperature, Sea Ice, and Sea-Level Pressure over 1850–2023 from Coupled

Data Assimilation. In re-review at Journal of Climate. Preprint: https://doi.org/10.31223/

X5JH8K.

4.1 Abstract

Historical observations of Earth’s climate underpin our knowledge and predictions of climate vari-

ability and change. However, the observations are incomplete and uncertain, and existing datasets

based on these observations typically do not assimilate observations simultaneously across di!er-

ent components of the climate system, yielding inconsistencies that limit understanding of coupled

climate dynamics. Here we use coupled data assimilation, which synthesizes observational and

dynamical constraints across all climate fields simultaneously, to reconstruct globally resolved sea-

surface temperature (SST), near-surface air temperature (T), sea-level pressure (SLP), and sea-ice

concentration (SIC), over 1850–2023. We use a Kalman filter and forecasts from an e”cient em-

ulator (Linear Inverse Model; LIM) to assimilate observations of SST, land T, marine SLP, and

satellite-era SIC. We account for model error by training LIMs on eight CMIP6 models, and we use

the LIMs to generate eight independent reanalyses with 200 ensemble members, yielding 1600 total

members. Key findings in the Tropics include post-1980 trends in the Walker circulation that are

consistent with past variability, whereas the tropical SST contrast (the di!erence between warmer

and colder SSTs) shows a distinct strengthening since 1975. ENSO amplitude exhibits substantial

low-frequency variability and a local maximum in variance over 1875–1910. In polar regions, we

find a muted cooling trend in the Southern Ocean post-1980 and substantial uncertainty. Changes

in Antarctic sea ice are relatively small between 1850 and 2000, while Arctic sea ice declines by

https://doi.org/10.31223/X5JH8K
https://doi.org/10.31223/X5JH8K
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0.5± 0.1 (1ε) million km2 during the 1920s.

4.2 Significance statement

The key advance in our reconstruction is that the ocean, atmosphere, and sea ice are dynamically

consistent with each other and with observations across all components, thus forming a true climate

reanalysis. Existing climate datasets are typically derived separately for each component (e.g.,

atmosphere, ocean, and sea ice), leading to spurious trends and inconsistencies in coupled climate

variability. We use coupled data assimilation to unify observations and coupled dynamics across

components. We combine forecasts from climate models with observations from ocean vessels and

weather stations to produce monthly state estimates spanning 1850–2023 and a novel quantification

of globally resolved uncertainty. This reconstruction provides insights into historical variability and

trends while motivating future e!orts to reduce uncertainties in the climate record.

4.3 Introduction

The historical record (c. 1850–present) is central to our understanding of climate variability and

Earth’s response to anthropogenic forcings, but we have yet to fully extract the available infor-

mation from instrumental data. Observations of sea-surface temperature (SST), near-surface air

temperature (T), and sea-level pressure (SLP) from ships of opportunity and weather stations are

noisy, sparse, and vary over time, which adds an incomplete-data problem (Schneider, 2001) to

analyses of climate variability and change that cannot be avoided and should not be ignored.

To prepare observations for climate analysis, data sources must first be homogenized (e.g., Kent

and Kennedy, 2021; Chan and Huybers, 2019; Chan et al., 2023; Karl et al., 2015; Hausfather

et al., 2017; Cowtan et al., 2018), and then the missing values must be imputed. Imputation is

typically statistical, employing pattern-based methods (including empirical orthogonal functions;

EOFs) derived from recent decades or kriging, and does not involve dynamical constraints (e.g.,

Kaplan et al., 1998; Rohde et al., 2013; Cowtan and Way, 2014; Hirahara et al., 2014; Huang et al.,

2017; Kadow et al., 2020; Vaccaro et al., 2021). Furthermore, when values are imputed for di!erent

climate fields, e.g., SST and SLP, there are no dynamical constraints ensuring that the coupled

fields are physically consistent. Imputation and homogenization can have pronounced impacts on

assessments of the climate sensitivity to increasing greenhouse gases (e.g., Sherwood et al., 2020;
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Forster et al., 2021; Modak and Mauritsen, 2023), e!orts to distinguish internal variability from

forced climate change (e.g., Hegerl et al., 2019; Wills et al., 2020), understanding of atmosphere–

ocean variability (e.g., Battisti et al., 2019), and evaluation of climate models (e.g., Wills et al., 2022;

Simpson et al., 2025). Here we apply a di!erent approach to solve the incomplete-data problem: we

use coupled data assimilation to impose observational and dynamical constraints across all climate

fields simultaneously, ensuring that the full state estimate is internally consistent.

SST patterns play a ubiquitous role in regulating climate variability (e.g., Bjerknes, 1969; Bar-

sugli and Battisti, 1998; Alexander et al., 2002; Deser et al., 2010a; Newman et al., 2016; Czaja

et al., 2019; Capotondi et al., 2023), radiative feedbacks (e.g., Armour et al., 2013; Andrews et al.,

2015; Zhou et al., 2016; Ceppi and Gregory, 2017; Andrews and Webb, 2018; Dong et al., 2019;

Fueglistaler, 2019; Andrews et al., 2022; Salvi et al., 2023; Cooper et al., 2024), and the hydrologic

cycle (Hastenrath and Greischar, 1993; Xie et al., 2010; Hoerling et al., 2010; Chadwick et al.,

2014; Lehner et al., 2018; Siler et al., 2019; Cook et al., 2022; Kuo et al., 2023; Seager et al., 2023).

There are a variety of recent (c. 1980–present) climate phenomena tied to SSTs that seem either

unprecedented or unremarkable depending on what we deem to be natural variability, and this

interpretation of recent trends relies on the incomplete and brief instrumental record (e.g., Wunsch,

1999). In the tropical Pacific, the zonal SST gradient has strengthened (Solomon and Newman,

2012; Coats and Karnauskas, 2017; Lee et al., 2022; Watanabe et al., 2024), with cooling in the East

Pacific and warming in the West Pacific that has coincided with an apparent strengthening of the

Walker circulation post-1980 (e.g., L’Heureux et al., 2013; McGregor et al., 2014; Watanabe et al.,

2023; Heede and Fedorov, 2023) and distinct tropospheric temperature trends (Flannaghan et al.,

2014; Fueglistaler, 2019; Po-Chedley et al., 2021). At the poles, the Arctic has warmed rapidly

since 1980 with substantial loss of sea ice (Dörr et al., 2023; England et al., 2021; Notz and SIMIP

Community, 2020), while the Southern Ocean has cooled with an overall expansion of sea ice—until

2015, after which the Southern Ocean has shown rapid warming and sea ice loss (Fan et al., 2014;

Stuecker et al., 2017; Fogt et al., 2022; Espinosa et al., 2024; Roach and Meier, 2024; Zhang and

Li, 2023; Turner et al., 2022; Dong et al., 2023; Suryawanshi et al., 2023; Bonan et al., 2024).

A major challenge for the climate dynamics community is understanding the causes of these

observed changes as well as the apparent yet debated inability of our state-of-the-art coupled climate

models to replicate them (e.g., Wills et al., 2022; Dong et al., 2021; Rugenstein et al., 2023; Seager
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et al., 2022; Olonscheck et al., 2020; Chung et al., 2019; Watanabe et al., 2021; Roach et al., 2020;

Notz and SIMIP Community, 2020; Chemke et al., 2022; Kang et al., 2024). Progress on this

endeavor requires robustly quantifying observational uncertainties and placing recent changes in

historical context with reliable reconstructions of past climate changes. For example, are the post-

1980 trends in tropical SST gradients, the Walker circulation, and polar climates unique over the

historical record, or have such changes occurred often due to internal climate variability?

Existing SST datasets designed for climate analysis use a variety of statistical interpolation

methods. These methods have been recently summarized in Modak and Mauritsen (2023) and

Lewis and Mauritsen (2021) and described in detail in a review by Kent and Kennedy (2021),

which also explains the extensive e!orts to homogenize time-varying sources of in situ data. To

assess the atmospheric response to SST and sea-ice concentration (SIC) over the historical record

in atmospheric general circulation models (i.e., in AMIP-type simulations; Eyring et al., 2016;

Webb et al., 2017), complete coverage and monthly resolution of SST/SIC is required. Combined

SST/SIC datasets for this purpose include the 1870–2022 PCMDI/AMIP-II boundary condition

(Hurrell et al., 2008) used as the standard for CMIP6, 1854–present NOAA ERSSTv5 (Huang et al.,

2017), Met O”ce Hadley Centre’s 1870–present HadISST1 (Rayner et al., 2003) and 1850–2010

HadISST2.1 (no longer maintained; Titchner and Rayner, 2014), and the Japanese Meteorological

Agency’s 1850–present COBE-SST2 (Hirahara et al., 2014). Kaplan et al. (1998) developed a

landmark SST analysis using optimal interpolation, and since then the incomplete-data problem

has been addressed using kriging (Cowtan and Way, 2014), Markov random graphs (Vaccaro et al.,

2021), and machine learning (Kadow et al., 2020) to impute hybrid air-sea surface temperatures

over land and ocean.

Figure 4.1 depicts the time-evolving observing network of in situ SST measurements in HadSST4

(Kennedy et al., 2019). As motivation for this study, we illustrate the spread (1ε) across existing

datasets (HadISST1, HadISST2.1, ERSSTv5, COBE-SST2, and AMIP-II) in their preindustrial-

baseline SST (mean anomaly over years 1870–1899) and the spread in their SST trends from 1900–

1979 and 1980–2010. We separate the satellite era (c. 1980–present) from the earlier warming

because of the variety of studies highlighting and questioning the peculiarity of recent SST trends

(e.g., Fueglistaler and Silvers, 2021; Andrews et al., 2022; Lewis and Mauritsen, 2021). The spatial

pattern of uncertainty is influenced by varying methods of imputation, homogenization of data
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Figure 4.1: Historical observing network and SST uncertainty in pre-existing infilled datasets. (a–c)

Fraction of months with in situ data for SST over three time periods in HadSST4, where 1.0 indicates

data in every month during the period. (d) Illustration of systematic uncertainty in normalized

pattern of preindustrial-mean SST anomalies across existing infilled datasets, calculated as the

sample standard deviation (1ε) of the 1870–1899 mean anomalies across HadISST1, HadISST2.1,

ERSSTv5, PCMDI/AMIP-II, and COBE-SST2, relative to their 1961–1990 climatologies; local

anomalies are divided by global-mean anomalies (60°S–60°N) to highlight uncertainty in spatial

patterns. (e–f) Illustration of systematic uncertainty in patterns of SST trends, calculated as

the 1ε of local trends across the same datasets in panel d; local SST trends are first divided by

the global-mean SST trends (60°S–60°N) to highlight uncertainty in the patterns, and local values

greater than 1.0 indicate that the local 1ε is greater than the global-mean trend. Note di!erent

colorbars in panels d–f.
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sources, and representativeness error in using point observations as estimates of grid-scale means.

Even after 1980, the data coverage over the Southern Ocean and southeast Pacific is notably far

from complete, and the inter-dataset di!erences in those regions are substantial in recent decades

(Figure 4.1c,f).

Atmospheric reanalyses address the incomplete-data problem with data assimilation, which

uses a weather model’s dynamics to constrain the atmospheric state. Data assimilation (DA)

broadly describes the collection of methods that synthesize model forecasts with sparse and noisy

observations, producing posterior analyses and uncertainties that are subject to the dynamical

constraints of the model. DA is computationally intensive, hence existing reanalyses only assimilate

atmospheric observations and only apply dynamical constraints to the atmospheric component,

meaning that the SST and SIC boundary conditions are prescribed a priori in, for example, ERA5

(Hersbach et al., 2020; Soci et al., 2024), JRA-55 and JRA-3Q (Kobayashi et al., 2015; Kosaka et al.,

2024), NOAA-CIRES-DOE’s 20th Century Reanalysis (Compo et al., 2011; Slivinski et al., 2019),

NCEP/NCAR Reanalysis (Kalnay et al., 1996), MERRA-2 (Gelaro et al., 2017), and ModE-RA

(Franke et al., 2017; Valler et al., 2024).

Coupled atmosphere–ocean reanalysis remains a frontier and formidable challenge in climate

research. ECMWF’s coupled DA program, CERA-20C (Laloyaux et al., 2018), is now inactive,

and ECMWF no longer hosts its output. NCEP’s CFSR made a major advance (Saha et al.,

2010), which assimilated observations into atmosphere and ocean components separately, and in-

corporated coupling by using a coupled model during the forecast step—this process is known as

“weakly coupled” DA. The UFS-Replay dataset (NOAA, 2024), employs a weakly coupled “replay”

approach (Orbe et al., 2017), in which the coupled UFS model is nudged toward the existing ERA5

atmospheric reanalysis and ORAS5 ocean reanalysis (Zuo et al., 2019). In this study, we will use

“strongly coupled” DA, which (i) ensures that the coupled atmosphere-ocean-ice state is internally

consistent and (ii) synthesizes observational and dynamical constraints across each component si-

multaneously.

To circumvent the computational obstacles associated with DA in fully coupled models, lightweight

DA methods have been developed primarily for paleoclimate reconstruction, as reviewed by Tierney

et al. (2025a). The “o$ine” DA method uses a static, uninformed prior from pre-existing model

output (e.g., Hakim et al., 2016; Franke et al., 2017; Steiger et al., 2014, 2018; Samakinwa et al.,
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2021; Tierney et al., 2020; Osman et al., 2021; Annan et al., 2022; Smerdon et al., 2023; Valler

et al., 2024; Tierney et al., 2025b). “Online” methods use a time-evolving prior that is informed

by the previous initial conditions produced by data assimilation, thus retaining memory of past

observations. Online DA requires integrating a forecast model after each assimilation step, which

is the main computational bottleneck.

Data-driven approaches that emulate climate models can overcome the computational bottle-

neck. The linear inverse model (LIM) has been tested in annual-mean DA with proxies over the

last millennium (Perkins and Hakim, 2021) and for subseasonal forecasting (Hakim et al., 2022).

LIMs have been applied to study dynamics and predictability of the El Niño–Southern Oscillation

(ENSO) (e.g., Penland and Sardeshmukh, 1995; Shin et al., 2021; Vimont et al., 2014; Lou et al.,

2020; Kido et al., 2023), meridional modes (Vimont, 2012), global surface temperatures (Newman,

2013), SSTs in the North Atlantic (e.g., Zanna, 2012) and North Pacific (e.g., Newman, 2007; New-

man et al., 2016; Zhao et al., 2024), the Pacific-North American pattern (Henderson et al., 2020),

hydroclimate (Coats et al., 2020; Tseng et al., 2021), and sea ice (Brennan et al., 2023). LIMs

are computationally e”cient, enabling coupled assimilation of observations across Earth system

components, e.g., pressure observations in the atmosphere and SST observations in the ocean can

each inform both SST and SLP in coupled DA. Combining LIMs with data assimilation presents

an opportunity to constrain and quantify uncertainty in the historical climate record.

Here we use coupled data assimilation to reconstruct monthly and globally resolved SST, near-

surface air temperature (T), SLP, and SIC over 1850–2023. The novelty of our approach compared

to past reanalyses is that we constrain all climate fields simultaneously with (i) coupled dynam-

ics and (ii) observations across climate components. Our DA method is made computationally

tractable by e”cient emulators (LIMs), which are trained on eight CMIP6 models and capture

the essential dynamics for monthly reanalysis. We combine forecasts from LIMs with a Kalman

filter to produce a coupled reconstruction with time-varying uncertainty quantification. Section 4.4

describes methods and data, including LIMs, data assimilation, validation with an out-of-sample

pseudo-reconstruction, observations, and comparison datasets. Section 4.5 presents the histori-

cal reconstruction. Section 4.6 discusses the implications of the results for interpreting climate

variability and change and the caveats of the method. Section 4.7 presents the conclusions.
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4.4 Methods and data

In this section, we describe the reconstruction method, validation, and data sources. The recon-

struction of monthly means consists of (i) a monthly forecast, for which we use LIMs that emulate

eight CMIP6 models, and (ii) data assimilation in every month, for which we use the classic Kalman

filter (Kalman, 1960; Kalnay, 2003). We validate the method with a pseudo-reconstruction of a cli-

mate model’s 1850–2014 historical simulation (MPI-ESM1-2-HR), from which we draw observations

that mimic the true observing network.

4.4.1 Linear inverse models

Anomalies around an equilibrium state in the nonlinear climate system can be approximated as a

stochastically forced, linear dynamical system (e.g., Hasselmann, 1976; Penland and Sardeshmukh,

1995; Penland, 1996):
dx

dt
= Lx+ Sφ, (4.1)

where x is a state vector of N principal components of SST, T, SLP, and SIC, L is an N ↑ N

linear operator representing the deterministic dynamics, and Sφ approximates the unresolvable

nonlinear dynamics as stochastic forcing with an N ↑N noise-amplitude matrix, S, and a vector,

φ, of independent, Gaussian white noise with unit variance and length N .

LIMs typically assume stationary statistics, but Shin et al. (2021) extend the LIM framework

to include monthly variations in the dynamics. The monthly, or “cyclostationary” LIM, has been

applied to ENSO (Shin et al., 2021; Vimont et al., 2022; Kido et al., 2023). We build on this recent

work and use cyclostationary LIMs to model global SST, T, SLP, and SIC. We use the fixed-phase

approach (Shin et al., 2021; OrtizBeviá, 1997) to train the 12 Lj operators in the cyclostationary

LIM, where j indicates the month:

Lj = ↼↑1 log[Cj(↼)Cj(0)
↑1], for j = 1, 2, ..., 12. (4.2)

Cj(↼) and Cj(0) are the ↼ -lag and zero-lag covariance matrices of x for month j, and ↼ = 1 month

in all of the following equations. The stochastic amplitude matrices, Sj , are estimated from the

fluctuation-dissipation relation of Equation (4.1) (Penland and Matrosova, 1994),

dCj(0)

dt
= LjCj(0) +Cj(0)L

T

j +Qj , (4.3)
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where Qj = SjS
T

j . We follow Shin et al. (2021) in estimating the cyclostationary Qj as

Qj =
Cj+1(0) +Cj↑1(0)

2#t
↓ [LjCj(0) +Cj(0)L

T

j ], (4.4)

with #t = 1 month. Before computing Lj and Qj , we take the 3-month running means of Cj(↼)

and Cj(0), e.g., we estimate Cj(↼) ↔ ↗Cj↑1(↼),Cj(↼),Cj+1(↼)↘, where angle brackets denote an

equal-weighted average (Shin et al., 2021). As in previous LIM studies (e.g., Penland, 1996), we

remove any negative eigenvalues in Qj and rescale remaining eigenvalues to conserve the original

variance.

The LIM produces forecasts at lead ↼ = 1 month from integrating (4.1) in time as

x(t+ ↼) = Gjx(t) + n, (4.5)

where Gj = exp(Lj↼) = Cj(↼)Cj(0)↑1. The integrated stochastic term, n, equals zero in a

deterministic forecast, such as the prior-mean forecast in the Kalman filter as described below.

The forecast equation for the error covariance, assuming no correlation between error and state,

is

P(t+ ↼) = GjP(t)GT

j +Nj(↼). (4.6)

We forecast the full covariance matrix with the LIM, instead of estimating it from ensemble mem-

bers, because this approach is exact for a given LIM. It is equivalent to using an infinite ensemble.

To solve for Nj(↼), we extend the logic that applies to the stationary LIM (Hakim et al., 2022;

Penland, 1989) for the cyclostationary case. Equation (4.6) must be valid for any month’s initial

condition, including Cj(0), from which the monthly forecast must arrive at Cj+1(0) because the

statistics are cyclostationary, therefore:

Nj(↼) = Cj+1(0)↓GjCj(0)G
T

j . (4.7)

We train separate LIMs to emulate the following eight CMIP6 models: CESM2, GFDL-ESM4,

HadGEM3-GC3.1-LL, SAM0-UNICON, UKESM1.0-LL, NorESM2-LM, EC-Earth3, and E3SM-2-

0. Our selection of models is informed by Lou et al. (2023), which found that this subgroup per-

forms best in an analog method for ENSO forecasting, although we make two changes: we remove

HadGEM3-GC3.1-MM to prevent having two versions of HadGEM3, and we substitute E3SMv2.0

(Qin et al., 2024) for CIESM because of issues simulating sea ice in CIESM (Lin et al., 2020). For
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training data, we use preindustrial-control simulations with historical (1850–2014) simulations ap-

pended (summary in Appendix A). LIMs are trained separately for each model using monthly mean

anomalies, and each LIM has a minimum of 665 years of training data (500+ preindustrial and 165

historical years). While approximately 100 years of training data is su”cient for a Tropics-only

cyclostationary LIM (Shin et al., 2021), global LIMs require a longer record. Thus long preindus-

trial simulations are essential for training, and we find that appending the historical simulations

expands the footprint of regions with nonzero SIC variability in the training data, which improves

reconstruction of SIC.

We regrid all training data bilinearly to 2° resolution (96 ↑ 144 latitude-longitude grid). For

consistency with observations, which are expressed as anomalies relative to a 1961–1990 climatology,

we remove the mean and climatology in each gridcell calculated over 1961–1990 for each model.

Separately for each model and state variable, we compute EOFs area-weighted by the square-root of

the cosine of latitude for SST, T, SLP, Northern Hemisphere (NH) SIC, and Southern Hemisphere

(SH) SIC. We retain approximately 85% of each field’s variance in the truncated state. We form

each model’s standardized state vector from its principal components, xk, as:

x =





xSST /εSST

xT /εT

xSLP /εSLP

xSICNH
/εSICNH

xSICSH
/εSICSH





,

where ε2
k
is the retained variance after EOF truncation of field k. We use the standardized state

vectors x to compute covariance matrices for each model, and we project into and out of the LIM

basis by storing the EOFs and scale factors, εk, for each field. Each LIM is run independently in

parallel through the data assimilation framework.

4.4.2 Data assimilation

Given a prior forecast of the state’s monthly mean xf and error covariance Pf , we assimilate

observations to produce the posterior analysis xa and Pa using the Kalman filter:

xa = xf +K(y↓Hxf ), (4.8)
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Pa = [I↓KH]Pf , (4.9)

K = PfH
T [HPfH

T +R]↑1, (4.10)

where K is the Kalman gain, y is the vector of observations, H is the linear observation operator,

and R is the observation error covariance. After solving (4.8–4.10) for a given month, we forecast

the next month from (4.5), with n = 0, and (4.6).

Our method is “strongly coupled online DA,” where “strongly coupled” means that we assimilate

observations concurrently across the atmosphere–ocean–ice system, and all fields influence each

other through cross-component covariances. “Online” means that we use a forecast model with

the previous assimilation step’s initial conditions to inform the prior. Because this method uses

the classic Kalman filter and propagates Pf exactly, we avoid the sample error and localization

issues that arise when estimating Pf in an ensemble Kalman filter (Evensen, 1994; Houtekamer and

Zhang, 2016). However, ensemble-member trajectories are needed to analyze statistics of temporal

variability, and this variability must be constrained by dynamics rather than sampled independently

(Emile-Geay et al., 2024). We solve this problem with a modified version of the ensemble Kalman

filter, described subsequently, that has no impact on the mean or covariance, (4.8–4.9), but rather

simply provides sample estimates from the posterior distribution.

We generate ensemble members using the perturbed-observations version of the ensemble Kalman

filter (Houtekamer and Mitchell, 1998; Burgers et al., 1998), except we use the exact prior covari-

ance forecast from the classic Kalman filter (4.6, 4.9). For each LIM, we initialize 200 ensemble

members in January 1850 with random draws from a multivariate-normal distribution with covari-

ance C1(0). Each ensemble member is updated using (4.8), with x
n

f
corresponding to ensemble

member n in place of the ensemble mean, and y
n is a multivariate-normal random draw of the

observations with mean y and covariance R. After the assimilation, each x
n
a is advanced to the

next month using (4.5). The noise term in (4.5), n, becomes a random draw from Nj(↼) in (4.7)

for each ensemble member. Because our LIMs are built to forecast monthly means, we can draw

from the distributions of the monthly statistics rather than stochastically integrating (Penland

and Matrosova, 1994) each ensemble member. Spread across the ensemble therefore arises from

each member having di!erent initial conditions, di!erent realizations of the stochastic term in the

forecast model, and di!erent observations due to the perturbations and the unique values of the
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200-member ensemble of observations from HadSST4.

An additional benefit of the ensemble is that we can propagate temporally correlated observation

errors that are associated with uncertainties in bias corrections. For example, HadSST4 (described

below) provides a 200-member ensemble of monthly SST observations to represent temporally

correlated errors (Kennedy et al., 2019). To incorporate these errors, we let y vary across the

ensemble members, but each of our 200 ensemble members xn is paired at every timestep with the

corresponding ensemble member n from the HadSST4 ensemble.

4.4.3 Observations

We use four sources of observations corresponding to each of the four state variables (SST, T, SLP,

SIC). All observations are anomalies relative to a 1961–1990 climatology, which is the period chosen

by Kennedy et al. (2019) and Osborn et al. (2021).

SST observations are from HadSST4 version 4.0.1.0 (Kennedy et al., 2019), provided by the

Met O”ce Hadley Centre on a 5° ↑ 5° grid. HadSST4 quality controls and corrects biases in

the in situ measurements from ICOADS 3.0.0 (1850–2014) and ICOADS 3.0.1 (2015–present), the

central database of ship records (Freeman et al., 2017). HadSST4 provides non-infilled data as

monthly means spanning 1850–present, and ship coverage varies substantially over time (Figure

4.1). Measurement and sampling errors are provided for every gridcell and month, and error

covariance matrices are provided that estimate the spatially correlated errors. We include these

sources of error in R. Temporally correlated errors from uncertain bias corrections are estimated

with a 200-member ensemble of observations, and we account for these errors with our ensemble

DA method, described in Section 4.4.2.

Observations of near-surface air temperature (T) over land are from CRUTEM5 version 5.0.2.0

(Osborn et al., 2021). The weather-station data is quality controlled, bias-corrected, and provided

as non-infilled monthly means with error estimates on a 5° ↑ 5° grid. We include CRUTEM5’s

time-varying measurement and sampling errors in R.

SLP observations are from ICOADS Enhanced Release 3.1 for 1850–2014 and Release 3.0.2, for

2015–2023 (Freeman et al., 2017), which only includes marine data. Ideally, we would assimilate

terrestrial SLP observations, but the ISPD dataset (Cram et al., 2015) of surface pressures does
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not have a homogenized product available that combines data at various elevations into a gridded

dataset of monthly means. The lack of direct constraints on terrestrial SLP is a limitation of

our reconstruction; hence, we focus our analysis on marine SLP. ICOADS marine SLP data are

provided as monthly means on a 2° ↑ 2° grid, along with the number of observations, nobs, in

each month and the intra-month standard deviation, s, of the observations in each gridcell. The

baseline climatology for anomalies is from Hersbach et al. (2020). There are a large number of SLP

observations due to the finer grid of ICOADS compared to HadSST4. We eliminate observations

with nobs < 5, which are expected to have a low signal-to-noise ratio. For months that have

data in more than 3000 gridcells, we mask up to 40% of the values between 25°S and 60°N using

random sampling. These limits increase computational e”ciency of the assimilation and maintain

a reasonable balance between the number of SLP and SST observations, otherwise there would

be approximately five times as many SLP as SST observations. Valler et al. (2024) also reduce

the number of ICOADS observations of SLP in their atmospheric reanalysis and set a similar

threshold of nobs = 10 per gridcell. Past studies identified a bias in ICOADS SLP data before 1870,

which is discussed in Slivinski et al. (2019), Freeman et al. (2017), and Allan and Ansell (2006).

NOAA 20CRv3 performed a bias correction of the pre-1870 SLP observations, so we substitute the

1850–1870 SLP from ICOADS with the collocated values from NOAA 20CRv3. ICOADS does not

provide an estimate of measurement and sampling errors which comprise the diagonal terms in R.

As described in Appendix B, we estimate R from the intramonth spread in individual observations

and the variance across neighboring observations.

Sea ice observations are provided by the NOAA/NSIDC Climate Data Record (CDR) of Passive

Microwave Sea Ice Concentration, Version 4 from 11/1978–09/2023 and Near-Real-Time, Version

2, for 10/2023–12/2023 (Meier et al., 2021b,a). We coarsen the observations from 25 km to 2°

resolution. At each timestep in the assimilation with satellite data, we use a subset of the available

data, which has nearly complete coverage of the polar regions. We retain all observations with

SIC ranging from 0.01 to 0.98 and 40% of the remaining observations using random sampling. For

measurement and sampling errors that form the diagonal terms in R, we use the provided standard

deviations of daily values, but we set the minimum error to 0.01. As described in Appendix B for

SLP, these intramonth standard deviations approximate the monthly mean error. For SIC, they are

calculated across both the NASA Team and Bootstrap algorithms, sampling the systematic error



108

across data-processing methods. Errors are small in open water and pack ice but are often between

0.3 and 0.5 in partial ice cover. We do not have satellite data for sea ice from 1961–1978, but we

require a full climatology from 1961–1990 to calculate the SIC anomalies relative to a baseline that

is consistent with the HadSST4 anomalies. The mean of the eight models used for LIM training

agrees well with observations over the satellite era (SI of Roach et al., 2020; Notz and SIMIP

Community, 2020), so we combine the multi-model mean of the eight historical simulations from

1/1961–11/1978 with the satellite data from 12/1978–12/1990, and we use the merged climatology

from 1961–1990 as the reference for SIC anomalies. Because solutions to (4.8) are not restricted to

SIC between zero and one, we use the climatology in postprocessing to ensure that SIC is between

zero and one.

4.4.4 Validation: Pseudo-reconstruction of an out-of-sample model

To test our method, we mimic the real reconstruction problem and attempt to reconstruct the 1850–

2014 historical simulation from a climate model. Our target model is MPI-ESM1-2-HR, ensemble

member r1i1p1f1 (Mauritsen et al., 2019). We have chosen MPI-ESM1-2-HR because it is a di”cult

test of the method given that, unlike nearly all other models, it has cooling in the Southern Ocean

from 1980–2014. It also has a low-bias in Antarctic sea ice (Roach et al., 2020) and substantially

di!erent ENSO statistics and radiative feedbacks (Bloch-Johnson et al., 2024) compared to the

models used for LIMs and priors in the data assimilation. The pseudo-reconstruction’s target is

out-of-sample because MPI-ESM1-2-HR is not used for LIM training; the dynamics of the target

model are unknown to our eight forecast models.

We draw pseudo-observations from the target simulation at the same times and locations where

real observations are available for SST, T, SLP, and SIC. Random errors are added to the pseudo-

observations by sampling from the real observation errors in R. Note that real observations also

have biases and unknown, unquantified errors which make the real reconstruction more challenging

than this test. On the other hand, the LIMs used as model priors are selected based on their ability

to collectively emulate reality rather than the target model of the pseudo-reconstruction.

Figure 4.2 shows timeseries representing climate variability from the pseudo-reconstruction.

The ensemble mean is calculated as the grand mean across all 1600 ensemble members (8 LIMs



109

Figure 4.2: Validation by pseudo-reconstruction: timeseries. (Orange) Values from the target

model, the 1850–2014 historical simulation from MPI-ESM1-2-HR. (Blue) Data assimilation result,

showing mean of 1600 ensemble members; shading denotes 17th and 83rd percentiles. (a) Atlantic

Multidecadal Variability with 10-yr low-pass filter and monthly values as thin lines. (b) Pacific

Decadal Oscillation with 6-yr low-pass filter and monthly values as thin lines. (c) Monthly Nino3.4

with 30-yr running mean removed. (d) Rolling 30-yr standard deviation of Nino3.4 in panel c. (e)

Zonal gradient of tropical Pacific SST with 10-yr low-pass filter. (f) Tropical SST contrast, SST#,

5-yr running mean. (g) Global-mean near-surface air temperature (GMSAT) with 10-yr low-pass

filter and monthly values in thin lines. (h) Zonal mean of Southern Ocean SST (50°–70°S) with

10-yr low-pass filter. (i) Walker circulation, i.e., zonal SLP gradient across tropical Pacific, with

10-yr low-pass filter. (j) Southern Annular Mode with 10-yr low-pass filter. (k) Arctic and (l)

Antarctic sea ice area, showing 12-month running mean. R2 and Nash-Sutcli!e E”ciency (NSE)

are based on the filtered metrics (see Supplemental Figure 4.S5 for unfiltered monthly results).

Calculation of metrics is described in Section 4.4.4.
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↑ 200 members), and the ensemble shading spans the 17th–83rd percentiles. We note that any

one of the eight LIM-DA systems may not have a posterior distribution that spans the true state

by itself. However, the grand ensemble of posterior distributions from all eight LIM-DA systems,

which includes the spread from model error, generally spans the target (Figure 4.2). Because the

grand ensemble represents eight separate DA systems, its distribution is non-Gaussian.

The metrics in Figure 4.2 are calculated as follows, with anomalies representing the departures

from the 1961–1990 climatological annual cycle unless stated otherwise:

• Atlantic multidecadal variability (AMV) is the monthly mean SST anomaly in the North

Atlantic (0°–60°N, 80°W–0°W) minus the global mean; the mean of the index from 1900–1970

is removed before plotting (Trenberth and Shea, 2006).

• The Pacific Decadal Oscillation (PDO) is the leading EOF of the monthly mean SST anomaly

in the North Pacific (20°–70°N) after removing the global mean (Newman et al., 2016).

• Nino3.4 is the monthly mean SST anomaly over 170°W to 120°W and 5°S–5°N, with the 30-yr

running mean removed.

• The zonal SST gradient in the tropical Pacific is the mean SST anomaly in the west (80°E–

150°E) minus the east (160°W–80°W), spanning 5°S–5°N (e.g., Heede and Fedorov, 2023).

• SST#, which denotes the tropical SST contrast, is the mean of the warmest 30% of all

tropical SSTs (30°S–30°N) minus the mean tropical SST, and the 1961–1990 mean is removed

(Fueglistaler, 2019). We note that SST# requires actual SSTs, not just anomalies. To estimate

SST# for the pseudo-reconstruction, we add reconstructed anomalies to the target model’s

1961–1990 climatology, which assumes outside knowledge of the target’s climatology. For

the actual reconstruction of SST#, we add the reconstructed anomalies to the 1961–1990

climatology from HadISST2.1’s ensemble mean. We show the 5-year running mean of SST#

for consistency with Fueglistaler and Silvers (2021).

• Southern Ocean SST is the zonal-mean SST anomaly from 50°–70°S (Doddridge and Marshall,

2017).
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• Global-mean near-surface air temperature (GMSAT) is the global-mean T anomaly.

• The Walker circulation, measured by the zonal SLP gradient, is the mean SLP anomaly in the

west Pacific (130°E–150°E) minus the central-east Pacific (160°W–120°W), spanning 5°S–5°N

(e.g., Heede and Fedorov, 2023).

• The Southern Annular Mode (SAM) is the standardized zonal-mean SLP anomaly at 40°S ±

2° minus the standardized zonal-mean SLP anomaly at 65°S ± 2° (Gong and Wang, 1999); the

reference period for standardization is 1961–1990, and each month is standardized separately.

• Sea ice area is the sum of the products of SIC and gridcell area; a common land mask is used

when comparing ice area across various SIC datasets.

Most large-scale metrics are reconstructed with accuracy. We assess performance by the Pearson

correlation (R), the fraction of variance explained (R2), and the Nash-Sutcli!e E”ciency (NSE),

NSE = 1↓
∑

(xi ↓ x̂i)2∑
(xi ↓ x̄)2

,

which accounts for the relative phasing of the target timeseries (xi) versus the reconstructed time-

series (x̂i), the signal amplitude, and bias. The NSE has an upper bound equal to one and can

become negative from biases in the mean or amplitude of variability (Nash and Sutcli!e, 1970).

We find R2 > 0.80 for the AMV, PDO, Nino3.4, the 30-year rolling 1ε of Nino3.4, the zonal SST

gradient in the tropical Pacific, GMSAT, Southern Ocean SST, the Walker circulation (zonal SLP

gradient), the SAM, and Arctic ice area. The tropical SST contrast, SST#, has the lowest R2 at

0.31.

The reconstruction of the Walker circulation has a damped amplitude compared to the target,

which is due to the EOF truncation of SLP in the LIM training. We show an additional version

of the target model’s Walker circulation, which is calculated after truncating the target’s SLP into

the leading 30 EOFs. Truncation is expected to a!ect tropical SLP because the variance in tropical

SLP is low compared to the variance at higher latitudes, but truncation does not appear to have a

substantial influence on other metrics.

Antarctic sea ice has R2 = 0.50 and is biased high in the reconstruction before 1979. The reason

for this bias is that the target model is biased low relative to the multi-model mean of the LIMs and
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relative to the satellite record (Roach et al., 2020). There are decadal periods of abrupt ice loss in

the target model which are not captured in the reconstruction. These ice-loss events are associated

with brief warming episodes in Southern Ocean SST (Figure 4.2h), which are also not detected

in the reconstruction. While we do not know whether such Antarctic ice-loss events happen in

nature, we note that our pseudo-reconstruction of MPI-ESM1-2-HR does not capture its ice-loss

events when observations are very sparse. Reasons for this deficiency could be (i) the LIMs used

as model priors are too di!erent from the target model, and sparse observations cannot overcome

those di!erences, and/or (ii) the ice-loss events do not covary with available observations, and even

a perfect model would be unable to reconstruct them from the data. Despite missing these decadal

warmings, the lower-frequency variability in Southern Ocean SST and the SAM is captured by the

reconstruction.

Figure 4.3 shows the pattern of trends in annual-mean SST for 1900–1979 and 1980–2014.

Local trends are divided by the global-mean trend to emphasize the patterns. We also show

the reconstruction’s ensemble spread (1ε) in trend patterns, which highlights regions of elevated

uncertainty. Note that SST is defined in all ocean gridcells at all times, even when SIC is 100%,

so there are no missing values in the SST field. It is important to recall that observations in the

Southern Ocean and southeast Pacific are sparse even after 1980 (Figure 4.1c), which is evident in

our uncertainty quantification.

To further illustrate the uncertainty, we show trends from individual ensemble members (Figure

4.3c,g). These ensemble members show more cooling in the Southern Ocean than is seen in the

ensemble mean. The key point, which is relevant to the next section on the real reconstruction, is

that our DA framework is capable of reconstructing cooling over the Southern Ocean, even though

the models used to train the LIMs do not show post-1980 cooling over the Southern Ocean in their

historical simulations. Model biases can often be overcome if there are enough observations, and

the LIM dynamics allow for cooling trends in the Southern Ocean. However, due to poor data

coverage and quality in the Southern Ocean, SST trends in this region should be interpreted with

caution.

Figure 4.4 shows trends in annual-mean SLP for 1900–1979 and 1980–2014. We only assimilate

marine SLP observations, hence terrestrial SLP is expected to deviate from the target model. Large-

scale patterns are consistent, but the errors in the magnitude of trends are substantial, especially
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Figure 4.3: Validation by pseudo-reconstruction: SST trends. (a) Normalized 1900–1979 ensemble

mean of trends in the annual mean from data assimilation; local trends are divided by the global-

mean trend to show SST patterns; upper-right indicates the global-mean trend before normalization,

scaled by the number of years to show trend in °C per 80 years. (b) Repeats panel a but showing

trends in the pseudo-reconstruction’s target model, MPI-ESM1-2-HR’s historical simulation. (c)

Repeats panel a but shows an individual member from ensemble data assimilation. (d) Uncertainty

in results from data assimilation, calculated as the sample standard deviation (1ε) across 1600

ensemble members’ normalized trends; values greater than 1.0 indicate that local 1ε is greater

than the global-mean trend; upper-right shows the global-mean of the 1ε in local trends before

normalization. (e–f) Repeats panels a–d for 1980–2014.
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Figure 4.4: Validation by pseudo-reconstruction: trends in sea-level pressure (SLP). (a) 1900–1979

ensemble mean of trends in the annual mean from data assimilation, scaled by the number of years

to show trends in hPa per 80 years; upper-right indicates the global-mean trend in Pa per 80 years.

(b) Repeats panel a but showing trends in the pseudo-reconstruction’s target model, MPI-ESM1-

2-HR’s historical simulation. (c) Error, shown as mean reconstruction minus target; RMSE shown

in upper right. (d) Uncertainty in results from data assimilation, calculated as the sample standard

deviation (1ε) across trends from 1600 ensemble members; upper-right shows the global mean of

the 1ε in local trends. (e–f) Repeats panels a–d for 1980–2014.
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over the Southern Ocean. Sparse observations and the unique physics of the target model compared

to the forecast models results in considerable uncertainty. The uncertainty indicates that many

ensemble members have local trends that di!er substantially from the target model, and therefore

accurately capturing the trend pattern requires considering the mean across the ensemble.

For additional validation, we show the spatial distribution of correlation and Nash-Sutcli!e

e”ciency for multiple time periods in Supplemental Figures 4.S1–S2. In Supplemental Figures 4.S3–

S4, we also show the correlation and Nash-Sutcli!e e”ciency when using only one LIM instead of

the multi-model mean of eight LIMs, which illustrates the major improvements from using multiple

models in the reconstruction (Amrhein et al., 2020; Parsons et al., 2021). Additionally, we show

monthly breakdowns of R2 and Nash-Sutcli!e e”ciency calculated without low-pass filtering the

monthly resolved results for each of the metrics in Figure 4.2 (see Supplemental Figure 4.S5). The

results show some seasonal variation in skill, which depends on the metric considered.

4.4.5 Observation validation from Desroziers statistics and HadSST4 comparison

For the reconstruction using real observations (Section 4.5), we also evaluate performance using

the Desroziers statistics of the DA system (Desroziers et al., 2005) as described in Slivinski et al.

(2021),

RMSEactual =



 1

Nobs

Nobs∑

j=1

(yj ↓ [Hxf ]j)
2




1/2

, (4.11)

RMSEexp =



 1

Nobs

Nobs∑

j=1

(
Rj + [HPfH

T ]j
)



1/2

, (4.12)

where j is the observation index for each observation in a given month, yj is observation j, [Hxf ]j

is the forecast prior mean of observation j, and the corresponding Rj and [HPfH
T ]j in Equation

(4.12) are the observation and forecast errors associated with observation j. RMSEactual is related

to the innovations from Equation (4.8) and compares the forecasts with observations that have not

yet been assimilated, while RMSEexp is related to the innovation covariance in Equation (4.9). The

results described below are shown in Supplemental Figure 4.S6 and illustrate the calibration of the

DA system.

If the calibration ratio RMSEactual/RMSEexp ↔ 1, the system is well calibrated (Slivinski et al.,
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2021; Houtekamer and Mitchell, 1998). We group the data into 20→N ↓ 90→N (NH), 20→S ↓ 20→N

(Tropics), and 20→S↓90→S (SH), and we compute the calibration ratio using 30-year running means

of the RMSE values, then we take the mean of the ratio over 1850–2023. For SST, we find calibration

ratios of 1.2 (NH), 1.1 (Tropics), and 1.2 (SH). These ratios are close to 1 and confirm that the DA

system is performing well for SST. Calibration ratios for SLP are 0.9 (NH), 0.7 (Tropics), and 0.8

(SH), indicating that the expected errors are larger than the actual errors due to excessive ensemble

spread. For T, calibration ratios are 1.1 (NH), 1.6 (Tropics), and 1.3 (SH). Although tropical SST is

very well calibrated with a ratio of 1.1, the expected errors are larger than RMSEactual for tropical

SLP (ratio 0.7) and smaller than RMSEactual for tropical air temperatures over land (ratio 1.6).

Overall, the Desroziers statistics suggest the DA system is well calibrated, especially for SST.

To illustrate observation validation at specific locations, we show sample timeseries comparing

the assimilated HadSST4 observations with the real DA results (from Section 4.5) at seven ocean

locations (Supplemental Figures 4.S7–S14). Overall, the results show that errors in the recon-

struction relative to the observations are in good agreement with observation error. When outliers

appear in the data, their influence is limited by the DA prior and the other observations that are

simultaneously assimilated. Supplemental Figures 4.S8–S14 also illustrate the time-varying obser-

vation density and uncertainty at various locations, reinforcing the summary calibration results in

that the reconstructed ensemble mean and spread are consistent with the assimilated observations

and their errors.

4.4.6 Comparison data

We include a variety of datasets for comparison with our reconstruction. For SST, we focus on

datasets which are globally complete and have monthly resolution. We include PCMDI/AMIP-II

(Hurrell et al., 2008), which was used for CMIP6’s AMIP simulations, NOAA ERSSTv5 (Huang

et al., 2017), HadISST1 (Rayner et al., 2003), HadISST2.1 (no longer maintained; Titchner and

Rayner, 2014), and COBE-SST2 (Hirahara et al., 2014). The statistical infilling in these products is

briefly described by Modak and Mauritsen (2023) and Lewis and Mauritsen (2021), with more detail

in Kent and Kennedy (2021). All products are regridded to the 2° resolution of our reconstruction.

For SLP, we show gridded reanalyses from ERA5 (1950–present) (Hersbach et al., 2020), NOAA
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/ CIRES / DOE 20CRv3 (1836–2015) from Slivinski et al. (2019), and NCEP/NCAR (1948–present)

from Kalnay et al. (1996), all regridded to 2° and monthly resolution. We also include an older

product, HadSLP2 infilled (Allan and Ansell, 2006). HadSLP2 is no longer maintained, but it

provides monthly means of SLP and its non-infilled product would be a companion to HadSST4

if updated. We include an o$ine-DA reconstruction of the Walker circulation using proxy data,

labeled F23 (Falster et al., 2023). We include the SAM from multiple reconstructions using o$ine

DA (O’Connor et al., 2021; Dalaiden et al., 2021; King et al., 2023) and regression (Fogt et al.,

2009), labeled as O21, D21, K23, and F09.

For SIC, we show HadISST2.2 (Titchner and Rayner, 2014), HadISST1 (Rayner et al., 2003),

and AMIP-II (Hurrell et al., 2008), which is largely based on HadISST1. The satellite record

from NOAA/NSIDC CDR (Meier et al., 2021b,a) is shown from 11/1978–12/2023. We include the

proxy-based reconstruction of Arctic SIC from Brennan and Hakim (2022), labeled BH22, which has

annual rather than monthly resolution. We regrid all SIC data to 2° resolution. When comparing

total anomalies in sea-ice area, we restrict the comparison to only include gridcells that have SIC

data in every dataset. Otherwise, one dataset may have large anomalies where another dataset has

missing values from di!erent land masks, skewing the comparison.

For global-mean T (GMSAT), we compare with HadCRUT5 (Morice et al., 2021) and BEST

(Rohde et al., 2013). Note that our reconstruction is of the near-surface air temperature, while the

comparison datasets are hybrids of air temperature over land and SST over ocean.

Notably, various datasets can impact one another. The lower boundary condition in ERA5

is the SST from HadISST2 until 2007 and sea ice from HadISST2 until 1979 (Hersbach et al.,

2020). NOAA 20CRv3 also uses HadISST2 sea ice over 1836–2015, HadISST2 SST after 1981, and

SODAsi.3 SST adjusted to HadISST2 climatology before 1981 (Slivinski et al., 2019; Giese et al.,

2016). An SST dataset, ERSSTv5, also uses HadISST2 sea ice to adjust its SST values in the

Southern Ocean (Huang et al., 2017). These are examples of how uncertainty in one dataset can

a!ect others.

4.5 Historical Reconstruction

In this section, we share the results of our reconstruction of SST, T, SLP, and SIC from coupled

atmosphere–ocean data assimilation with linear inverse models. We show timeseries and spatial
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trends of SST, SLP, and SIC, and the El Niño of 1877/1878.

4.5.1 Variability over 1850–2023

Figure 4.5 shows timeseries of the real reconstruction, as for the pseudo-reconstruction (Figure 4.2).

The AMV and PDO are similar across datasets for most of the historical record, as described for

the PDO in Newman et al. (2016), but PDO uncertainty is notably larger from 1850–1900.

Nino3.4 shows substantial inter-dataset spread before 1875, but the most interesting ENSO

feature is the low-frequency evolution of ENSO variance in Figure 4.5d, measured by the 30-year

rolling 1ε of Nino3.4. Recent studies have argued for increased ENSO variance with global warming

(e.g., Cai et al., 2021, 2023), although other work suggests that ENSO variance could decrease

with long-term warming (Callahan et al., 2021), and uncertainties in future ENSO variance have

substantial implications for global-scale climate predictability (Amaya et al., 2025). In our results,

ENSO variance was at local maximum over 1875–1900, decreased to a local minimum over 1930–

1960, and subsequently trended higher to the present. Overall, Figure 4.5d suggests considerable

centennial-scale power in ENSO variance.

Tropical SST gradients are diagnosed using two measures. The Pacific zonal SST gradient (Fig-

ure 4.5e), shows that the magnitude of the strengthening trend from 1980–2023 is not clearly distin-

guishable from past variability, such as the weakening from 1875–1905. The long-term strengthening

trend since 1900 has also been a focus of many studies (e.g., Cane et al., 1997; Karnauskas et al.,

2009; Deser et al., 2010b; Solomon and Newman, 2012; Coats and Karnauskas, 2017; Seager et al.,

2022; Lee et al., 2022), but 1900–1905 has the weakest zonal gradient during the historical record,

and the gradient in 1890 is comparable to 2023. However, the SST# metric (Figure 4.5f), repre-

senting the contrast between the warmest tropical SSTs and the tropical mean (Fueglistaler, 2019;

Fueglistaler and Silvers, 2021), shows a consistent strengthening from 1975–present. The persistent

1975–2023 trend in SST# may indeed be distinct compared to the variability before 1975, but

further investigation is needed.

The Pacific Walker circulation (zonal SLP gradient) appears to be dominated by stationary

decadal variability over the full historical record (Figure 4.5i). Our reconstruction does not show a

trend toward weakening of the Walker circulation over the 20th century (Vecchi et al., 2006; Tokinaga



119

Figure 4.5: Climate variability over 1850–2023. (Blue) Data assimilation results, showing mean of

1600 ensemble members; shading denotes 17th and 83rd percentiles. Note that panel a’s legend ap-

plies to SST datasets in panels a–f ; re-used line colors in SLP, T, and SIC panels do not necessarily

indicate consistency with SST datasets. (a) Atlantic Multidecadal Variability (SST) with 10-yr

low-pass filter. (b) Pacific Decadal Oscillation (SST) with 6-yr low-pass filter. (c) Monthly SST in

Nino3.4 region with 30-yr running mean removed. (d) Rolling 30-yr standard deviation of Nino3.4

in panel c. (e) Zonal gradient of tropical Pacific SST with 10-yr low-pass filter. (f) Tropical SST

contrast, SST#, 5-yr running mean. (g) Global-mean near-surface air temperature (GMSAT) with

10-yr low-pass filter and monthly values from data assimilation as thin line. (h) Zonal mean of

Southern Ocean SST (50°–70°S) with 10-yr low-pass filter. (i) Walker circulation, i.e., zonal SLP

gradient across tropical Pacific, with 10-yr low-pass filter. (j) Southern Annular Mode (SLP) with

10-yr low-pass filter. (k) Total Arctic and (l) Antarctic sea ice area, showing 12-month running

mean, and comparison satellite data from NOAA/NSIDC CDR. Calculation of metrics is described

in Section 4.4.4; comparison data is summarized in Section 4.4.6.
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et al., 2012), and the strengthening from c. 1979–2014 (e.g., Chung et al., 2019; L’Heureux et al.,

2013; Watanabe et al., 2023, 2024) appears within the range of variability prior to 1975. Heede

and Fedorov (2023) found large recent changes in the zonal SLP gradient in the NCEP/NCAR

Reanalysis, but that product may be an outlier over 2005–2020 (Figure 4.5i).

Our reconstruction of the Southern Annular Mode (SAM) has relatively small ensemble spread

relative to the spread across other products (Figure 4.5j). Notably, the pre-1980 disagreement

across reanalyses and other reconstructions is larger than the decadal variability in any one product.

Spurious trends in Southern Hemisphere SLP have been identified in reanalyses poleward of 60°S

during the early twentieth century and c. 1950 due to the general paucity of data over much of

the Southern Hemisphere (Schneider and Fogt, 2018; Fogt and Connolly, 2021; Laloyaux et al.,

2018). Local observations in the SAM region are sparse throughout most of the historical record.

Consequently, our SAM reconstruction is primarily constrained by remote observations of SLP,

SST, and T, with the dynamics of the LIMs acting to connect those remote observations to the

SAM region’s SLP. Many studies have highlighted the positive trend in the SAM from c. 1980–

present (e.g., Thompson and Solomon, 2002; Marshall, 2003; Polvani et al., 2011; Swart et al.,

2015; Banerjee et al., 2020; Fogt and Marshall, 2020), but some datasets in Figure 4.5j show longer-

term positive trends, possibly spanning the entire 20th century (O’Connor et al., 2021; Dalaiden

et al., 2021; Slivinski et al., 2019; Allan and Ansell, 2006). Our results indicate that the recent

trend only extends from approximately 1970–present, and the trends are most notable in DJF

(Supplemental Figure 4.S16). There appears to be another prolonged positive trend from 1850–

1920 in our reconstruction but not in any of the comparison data, and that the SAM trend aligns

with SST cooling in the Southern Ocean over the same period. Brönnimann et al. (2024) analyzed

newly digitized ship records from 1903–1916 and also find a positive SAM index and pronounced

surface cooling over the Southern Ocean during the early 1900s.

Sea ice from data assimilation (Figure 4.5k,l) exhibits major di!erences compared to the HadISST

and AMIP-II datasets, which have been used to assess the atmospheric response to SIC changes

over the historical record. Over much of the historical record, these datasets have constant values

at inferred climatologies. There are also di!erences in the satellite era due to uncertainties in data

processing and discontinuities in satellite sources (e.g., Eisenman et al., 2014; Buckley et al., 2024),

which are responsible for the spurious high values in Antarctic sea ice from 2009–2011 in HadISST1
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and AMIP-II (Screen, 2011), evident in Figure 4.5l.

For Arctic sea ice, the main di!erence across datasets relates to the early 20th-century warming

(Brönnimann, 2009; Hegerl et al., 2018). HadISST1 and AMIP-II do not have any signal of the

early 20th-century warming in sea-ice area. Our reconstruction shows a loss of 0.5±0.1 (1ε) million

km2 during the 1920s, measured by comparing the decadal means of the 1930s and 1910s. Note that

this value should not be compared directly with other datasets unless land masks are consistently

applied. The Brennan and Hakim (2022) reconstruction of annual means, using only proxy data

with o$ine DA, agrees closely with our results.

Antarctic sea ice is a unique result compared to existing estimates. In stark contrast to the

datasets used for CMIP6/DECK/AMIP/CFMIP (Eyring et al., 2016; Webb et al., 2017) and as

boundary conditions in reanalyses (e.g., Slivinski et al., 2019; Hersbach et al., 2020), our reconstruc-

tion shows much less ice loss from the preindustrial to present conditions. AMIP-II, HadISST1,

and HadISST2 are at the edge or outside of our likely range for the entire pre-1980 period. Note

that HadISST2 is the ice boundary condition in ERA5 and NOAA 20CRv3 before 1979, and it is

used to adjust SST in NOAA ERSSTv5.

In the early 20th century, we find a wide envelope of uncertainty in Antarctic ice area that

spans the range over the satellite record until 2022. Our results show a local maximum c. 1910,

consistent with the SH cooling reported by Brönnimann et al. (2024). We find greater Antarctic

ice cover in the early 1960s compared to the 1980s (Fan et al., 2014), consistent with Goosse et al.

(2024). However, our reconstruction shows a decrease throughout the 1970s (Supplemental Figure

4.S15) in contrast to the sharp drop in ice extent at the end of the 1970s reported by Goosse et al.

(2024). Early single-channel satellite retrievals from ESMR suggest Antarctic ice cover may have

been more extensive in the 1970s (Goosse et al., 2024; Kolbe et al., 2024), though the reliability

of ESMR is debated (Titchner and Rayner, 2014; Kolbe et al., 2024). As evident in the ensemble

spreads (Fig. 4.5l; Supplemental Figure 4.S15), the uncertainty before 1980 is substantial, and

more work is needed to constrain Antarctic SIC. The preindustrial-mean ice area (1850–1900) does

not appear clearly di!erent from the satellite-era range until the ice loss of 2022–2023 (Roach and

Meier, 2024; Espinosa et al., 2024; Zhang and Li, 2023; Fogt et al., 2022; Turner et al., 2022).

Our results for preindustrial ice area are consistent with Edinburgh and Day (2016)’s analysis of

ship records from the Heroic Age (1897–1917), who found ice expansion in the Weddell Sea but



122

comparable conditions to 1989–2014 in the other sectors.

Finally, we consider variability in Southern Ocean SST (zonal mean 50°–70°S). We find a large

spread in our ensemble before 1950 and a larger disagreement across SST datasets, which persists

from 1850 to 2023. We note two interesting results in Figure 4.5h. First, we find a long-term

warming trend from 1910–2023, which is approximately half as large as the 1910–present warming

trend in GMSAT. This is consistent with expectations, since Southern Ocean warming is muted

by upwelling of deep water that has not yet experienced the global warming signal (Armour et al.,

2016).

Second, we find a muted cooling of the Southern Ocean from 1980–2013, and slight warming

from 1980–2023. The comparison datasets show 1980–2013 cooling that is mostly outside of our

likely range. In situ observations are still sparse from 1980–2023 (Figure 4.1; Supplemental Figure

4.S14) and the data sources change dramatically over that period, possibly introducing spurious

trends from homogenizing di!erent data sources (Kennedy et al., 2019; Huang et al., 2019; Kent

and Kennedy, 2021; Hausfather et al., 2017; Karl et al., 2015). We elaborate on Southern Ocean

trends below and in the Discussion section.

The Southern Ocean cooling over recent decades is not unprecedented given that we find stronger

cooling from 1880–1910. Brönnimann et al. (2024) report that this cooling is a real climatic phe-

nomenon, not a data artifact. However, Sippel et al. (2024) suggest that biases in the bucket

measurements of SST are responsible for a cold bias from 1910–1930. If SST-bucket biases are

indeed responsible for this cooling trend, an explanation is still required for why the night-time

marine air temperatures (Cornes et al., 2020) also show this 1910–1930 cooling trajectory (Figure

1 of Sippel et al., 2024).

4.5.2 Patterns of SST, SLP, and SIC trends

Figure 4.6 shows spatial patterns of SST trends separately for the gradual warming from 1900–1979

and the recent period of 1980–2023. We show our reconstruction and its uncertainty alongside com-

parison trends from NOAA ERSSTv5 and COBE-SST2. Despite similar global-mean trends from

1900–1979, there are substantial disagreements in the pattern of trends especially over the Southern

Ocean and tropical Pacific. The post-1980 period is often viewed as having small uncertainty due
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Figure 4.6: Historical patterns of SST trends. (a) Normalized 1900–1979 ensemble mean of trends

in the annual mean from data assimilation; local trends are divided by the global-mean trend to

show SST patterns; upper-right value is the global-mean trend before normalization, scaled by the

number of years to show trend in °C per 80 years. (b) Repeats panel a but showing comparison data

from NOAA ERSSTv5 and (c) COBE-SST2. (d) Uncertainty in results from data assimilation,

calculated as the sample standard deviation (1ε) across 1600 ensemble members’ normalized trends;

values greater than 1.0 indicate that local 1ε is greater than the global-mean trend; upper-right

value is the global-mean of the 1ε in local trends before normalization. (e–f) Repeats panels a–d

for 1980–2023.
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Figure 4.7: Historical trends in sea-level pressure (SLP). (a) 1900–1979 ensemble mean of trends in

the annual mean from data assimilation, scaled by the number of years to show trends in hPa per

80 years; upper-right indicates the global-mean trend in Pa per 80 years. (b) Repeats panel a but

showing comparison datasets HadSLP2 and (c) NOAA 20CRv3. (d) Uncertainty in results from

data assimilation, calculated as the sample standard deviation (1ε) across local trends from 1600

ensemble members; upper-right shows the global mean of the 1ε in local trends. (e–f) Repeats

panels a–d for 1980–2023, with comparison reanalyses from (f) ERA5 and (g) NCEP/NCAR.
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to observation density (Figure 4.1), but the inter-dataset disagreements in Figure 4.6e–g suggest

there are nontrivial uncertainties in large-scale SST gradients. The southeast Pacific and Southern

Ocean regions, which have strong impacts on global climate variability and radiative feedbacks (e.g.,

Dong et al., 2022a; Kang et al., 2023c,a; Espinosa and Zelinka, 2024), have the worst observation

coverage (Figure 4.1).

Figure 4.7 shows spatial patterns of SLP trends for 1900–1979 and 1980–2023 from our re-

construction and comparison datasets. Note that our reconstruction only assimilates marine SLP

observations, so we expect it to di!er from reanalyses over land regions. From 1900–1979, there

are many large-scale di!erences between our reconstruction, HadSLP2, and NOAA 20CRv3. The

comparison datasets show strong negative trends in SLP over Antarctica and most of the Southern

Ocean during both time periods, whereas we find positive trends over 1900-1979. In this region,

regression-based reconstructions find positive trends in the early 20th century, also in contrast to

the negative trends in existing reanalyses (Fogt et al., 2019; Fogt and Connolly, 2021; Fogt et al.,

2024). Schneider and Fogt (2018) and Laloyaux et al. (2018) highlight problems with the atmo-

spheric circulation in the Southern Hemisphere in multiple reanalyses and how those problems

create spurious climate signals. The key problem identified in ERA-20C is that the assumed error

is too small for pressure observations. This is one reason why we ensure our SLP observation error

is not too small, as described in Appendix B.

Over 1980–2023, our SLP trends over the global oceans largely align with ERA5, albeit with

weaker positive trends in the central and eastern Pacific (Figure 4.7e,f). ERA5 has a substantial

trend in global-mean SLP, which increases by 21.1 Pa (44 yr)↑1 from 1980–2023, and removing

this trend would improve agreement with our reconstruction in many regions. NCEP/NCAR has

a substantial and opposite trend of ↓18.7 Pa (44 yr)↑1. Our reconstruction has a much smaller

1980–2023 trend in global-mean SLP of 3.8 Pa (44 yr)↑1 (Figure 4.7e) and similarly small trends

from 1900–1979 and also in the pseudo-reconstruction experiment (Figure 4.4). Once again, our

reconstruction highlights uncertainty over the Southern Ocean, especially the Amundsen Sea Low

and the Atlantic sector.

Figure 4.8 shows trends in Arctic SIC over 1900–1979, during the early 20th-century warming

from 1920–1935, and for the recent loss from 1980–2023. We compare with HadISST2, which is the

pre-satellite boundary condition used in ERA5 and NOAA 20CRv3, and with the NOAA/NSIDC
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Figure 4.8: Historical trends in Arctic sea-ice concentration (SIC). (a–c) Ensemble mean of trends

from data assimilation, scaled by the number of years in each period to show trends in SIC per

N years. (d–f) Repeats panels a–c but showing comparison datasets, with infilled HadISST2.2 in

panels d–e and satellite data from NOAA/NSIDC CDR in panel f. (g–i) Uncertainty in results

from data assimilation, calculated as local standard deviation (1ε) across 1600 ensemble members,

corresponding to time periods in panels a–c. Note that SIC is bounded from 0 to 1.
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Figure 4.9: Historical trends in Antarctic sea-ice concentration (SIC). (a–c) Ensemble mean of

trends from data assimilation, scaled by the number of years in each period to show trends in SIC

per N years. (d–f) Repeats panels a–c but showing comparison datasets, with infilled HadISST2.2

in panels d–e and satellite data from NOAA/NSIDC CDR in panel f. (g–i) Uncertainty in results

from data assimilation, calculated as local standard deviation (1ε) across 1600 ensemble members,

corresponding to time periods in panels a–c. Note that SIC is bounded from 0 to 1.
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satellite data that we assimilate. From 1900–1979, we find ice loss in the Barents Sea between

Svalbard and Russia. From 1920–1935, we find ice loss around most of the Arctic, partially o!set

by gains poleward of the Bering Strait. HadISST2 does not have this 1920–1935 ice loss. From 1980–

2023, our ice loss looks very similar to the satellite record, but it does not match exactly because

of uncertainty in the satellite data, the influence of non-SIC observations, and the particularities of

our LIM and DA methods.

Figure 4.9 shows trends in Antarctic SIC from 1900–1979, during the 1960–1979 period of ice

loss hypothesized by Fan et al. (2014), and from 1980–2023, a period with steady but small growth

and then recent rapid loss (e.g., Stuecker et al., 2017). Our reconstruction of 1900–1979 shows some

ice loss alongside the Southern Ocean SST warming, but we find a lesser magnitude and a di!erent

pattern compared to HadISST2. If sea ice has a relationship with the atmospheric circulation (e.g.,

Kohyama and Hartmann, 2016), the HadISST2 boundary condition may impact the circulation in

ERA5 and NOAA 20CRv3. From 1960–1979, we find ice loss in the Atlantic sector, which mostly

aligns with the pattern in HadISST2 but with a substantially di!erent magnitude. We see a minor

gain of ice in the Bellingshausen Sea, where HadISST2 shows large loss.

4.5.3 El Niño in 1877

The extreme El Niño that began in 1877, which is the largest event in the historical record, is an

instructive comparison case for infilled datasets. Observations are sparse but the signal is large.

Recent reconstructions of hybrid air/sea-surface temperature also focused on this event (Vaccaro

et al., 2021; Kadow et al., 2020) to illustrate how di!erent the imputed values can be for di!erent

datasets.

Figure 4.10 shows the onset of El Niño in July 1877. We show the ensemble spread in our recon-

structed SST and land T, the observations of SST and station temperatures, and two comparison

datasets. ERSSTv5 depicts the center of action in the coastal-eastern Pacific, whereas the central

Pacific is most notable in HadISST1. Our ensemble mean displays some commonalities with each

dataset, but we find higher confidence in the east Pacific El Niño (Figure 4.10b), and we note that

our method leverages teleconnections with observations of SLP and land temperatures to constrain

the SSTs. Our results also show large uncertainties in the central Pacific and the coastal-eastern
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Figure 4.10: El Niño in July 1877: reconstruction, observations, and uncertainty. (a) Contours

show uncertainty in the data assimilation, calculated as the sample standard deviation (1ε) across

the local anomalies in SST and near-surface air temperatures (T) over land for the 1600 ensemble

members; scattered dots show anomalies in SST from HadSST4, with size inversely proportional

to error, while triangles show land T from CRUTEM5; T and SST points use colorbar from panels

b–d. (b) Contours show ensemble mean of SST anomalies and land T from data assimilation, with

HadSST4 and CRUTEM5 observations. (c–d) Repeats panel b but with comparison SST datasets,

NOAA ERSSTv5 and HadISST1.
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Pacific (Figure 4.10a); i.e., uncertainty in the type of ENSO (e.g., Newman et al., 2011; Karnauskas,

2013; Capotondi et al., 2015). There are also large di!erences across datasets in the North Pacific.

Around the Southern Ocean in ERSSTv5, the influence of the HadISST2 sea ice is evident as a ring

of cold anomalies. This results from the expansion of Antarctic sea ice in HadISST2 (Figure 4.5l).

4.6 Discussion

With coupled DA, we provide a dynamically and observationally constrained perspective on coupled

variability and trends over the historical record. These results suggest it may be worth revisiting

assessments of forced versus internal variability and climate-model biases using this internally con-

sistent reconstruction. Many studies have characterized post-1980 trends, but placing those changes

in the context of the longer record may help disentangle the mechanisms and causes of both vari-

ability and trends. Several large-scale model biases, including those in the Southern Ocean and the

Tropics, now appear less drastic than previously estimated, suggesting climate models may perform

better than indicated by comparison with earlier datasets (e.g., Wills et al., 2022; Simpson et al.,

2025).

4.6.1 Tropical trends

The zonal SST gradient and Walker circulation in the tropical Pacific has been a focus of many

discussions of forced versus internal variability (Vecchi and Soden, 2007; DiNezio et al., 2009; Coats

and Karnauskas, 2017; Kohyama et al., 2017; Seager et al., 2019; Lee et al., 2022; Kang et al., 2023b;

Watanabe et al., 2024; Jiang et al., 2024). In our results, the 1979–2014 strengthening trend in the

Walker circulation (Pacific zonal SLP gradient) does not appear distinct from variability over the

historical record. The Pacific zonal SST gradient has a more notable trend from 1980–present, but

it is di”cult to convincingly say that the trend is outside of the range of natural variability.

Over the full twentieth century, we do not find a long-term weakening of the Walker circulation

(Tokinaga et al., 2012; Vecchi et al., 2006) nor a clear strengthening of the zonal SST gradient

(Coats and Karnauskas, 2017; Seager et al., 2022) that is distinct from past variability. If the

recent trend is a forced response to global warming from CO2 (e.g, Clement et al., 1996; Seager

et al., 2019), that trend is not yet distinct from past variability in the reconstruction.
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However, our results indicate that there is a peculiar trend from c. 1975–present in the strength-

ening of the SST contrast between the warmest SSTs and the mean SST over the entire Tropics

(SST#; Fueglistaler and Silvers, 2021; Fueglistaler, 2019). Fueglistaler and Silvers (2021) ques-

tioned whether the recent trend in SST# could be due to data artifacts in the SST record or purely

coincidence, i.e., a rare occurrence of variability during the satellite record. Data artifacts are still

a possible influence, but the dynamical constraints in our method reduce the likelihood of that

explanation, especially considering that the SST is also informed by SLP observations and station

temperatures. Further analysis of paleoclimate proxy data in the Tropics (e.g., Deutsch et al., 2014;

Sanchez et al., 2020, 2021) could help assess the role of possible data artifacts and the range of

natural variability in SST contrasts.

4.6.2 Southern annular mode

The positive trend in the SAM (c. 1980–present) has been associated with stratospheric ozone de-

pletion, CO2 forcing, natural variability, and other factors (Doddridge and Marshall, 2017; Polvani

et al., 2021; Bitz and Polvani, 2012; Seviour et al., 2016; Thomas et al., 2015; Thompson et al., 2011;

England et al., 2016; Fogt and Marshall, 2020; Banerjee et al., 2020). E!orts to determine what has

caused the SAM trend have been complicated by recent results, included in Figure 4.5j, depicting

a positive trend over the entire twentieth century (O’Connor et al., 2021; Dalaiden et al., 2021;

King et al., 2023; Slivinski et al., 2019). Our findings, which show no trend from 1925–1970, then

a prolonged positive trend from 1970–present, are consistent with a trend onset that is associated

with stratospheric ozone depletion (Thompson and Solomon, 2002; Fogt et al., 2009; Polvani et al.,

2011; Thompson et al., 2011). The regression-based reconstruction of F09 is in general agreement

with our results over 1920–1970, showing no significant SAM trend until a positive trend emerges

in DJF around 1970 (Fogt et al., 2009). We also find that DJF has the strongest SAM trend over

1970–present (Supplemental Figure 4.S16). Another large positive trend over 1850–1920 warrants

further investigation into possible drivers and the role of data quality, particularly given the sparse

and imperfect SLP observations in the early record. We note that Brönnimann et al. (2024) also

report positive SAM in the early 1900s in newly digitized ship data, supporting our results.
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4.6.3 Southern Ocean cooling

Studies of the post-1980 cooling in the Southern Ocean typically use SSTs from NOAA ERSST,

the latest of which is Version 5 (Huang et al., 2017). Even when nudging a climate model (CESM1)

to ERA reanalysis winds, the model does not reproduce the Southern Ocean SST cooling from

ERSST (Blanchard-Wrigglesworth et al., 2021; Dong et al., 2022a). Therefore, it seems that the

winds alone cannot explain the SST cooling over the Southern Ocean (Dong et al., 2023), and other

explanations have been proposed (e.g., Zhang et al., 2019; Haumann et al., 2020; Dong et al., 2022b;

Swart et al., 2023; Schmidt et al., 2023).

Pacemaker experiments, which nudge a coupled climate model’s SST in the Southern Ocean

to match an infilled SST dataset (typically NOAA ERSST), have been used to investigate how

SST cooling of the Southern Ocean a!ects global climate, radiative feedbacks, and the atmospheric

circulation (Zhang et al., 2021; Kang et al., 2023c,a). The Southern Ocean cooling has also been

proposed as a driver of cooling in the tropical east Pacific (Dong et al., 2022a), possibly forced by the

ozone hole (Hartmann, 2022) or other means (Watanabe et al., 2024). Kang et al. (2024) leverage

the pacemaker experiments, but they also highlight the importance of regional-scale discrepancies

in SST trends for the atmospheric circulation and uncertainty in post-1979 trends across reanalyses

in the Southern Hemisphere.

In our results, we find much less cooling over the Southern Ocean compared to NOAA ERSSTv5.

While more work is needed before definitive conclusions can be made about which reconstruction is

more accurate, we compare the non-infilled SST dataset that we use to inform our data assimilation,

HadSST4, with the non-infilled SST data from ERSSTv5 and from a recent product that has

undergone extensive bias corrections (DCENT, Chan et al., 2024). Then we also compare our

results with 1980–2023 trends in other infilled SST datasets.

Figure 4.11a compares the non-infilled anomalies in the southeast-Pacific sector of the Southern

Ocean (latitudes 50°S–70°S and longitudes 70°W–140°W). HadSST4 and DCENT show similar

trajectories, but they have a substantial o!sets relative to ERSSTv5. This suggests that not only

the infilling but also the homogenization of time-varying data sources a!ects trends in this region.

Kennedy et al. (2019) show the major transition from bucket measurements to drifting buoys

between 1980 and 2005, and Huang et al. (2019) find substantial di!erences in SST analyses from
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Figure 4.11: Recent evolution of Southern Ocean SST: comparing in situ data and infilled trends

in the southeast-Pacific sector. Both panels analyze the mean of values in the region west of the

Drake Passage, spanning latitudes 50°S to 70°S and longitudes 70°W to 140°W. (a) Comparison

of non-infilled SST anomalies, illustrating di!erences from the homogenization of time-varying in

situ sources; for visual clarity, 5-yr running mean is applied and the 1961–1979 mean is removed.

(b) Infilled SST trends for 1980–2023 from data assimilation (DA), with 1600 ensemble members

shown as histogram; the distribution is shaped by the eight distinct model priors. Vertical lines

indicate the mean trend and comparison datasets.
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2000–2016 when including drifting buoys and/or ARGO floats in NOAA ERSSTv5. ERSSTv5 has

a detailed bias-correction procedure and consequently could provide the best estimate in this region.

A key point is that the processing of time-varying data sources could have a spurious influence on

what appear to be climate trends.

Figure 4.11b shows the distribution of 1980–2023 SST trends in the southeast-Pacific sector of

the Southern Ocean (latitudes 50°S–70°S and longitudes 70°W–140°W). Our reconstruction shows

a wide range of uncertainty, with possible trends ranging from ↓0.3→C to 0.0→C (44 yr)↑1. Our

distribution is shaped by the uncertainty in bias corrections from HadSST4 and by the eight LIMs

used as priors in the assimilation. COBE-SST2 and HadISST1 are within our uncertainty range,

but ERSSTv5 has a much larger trend of ↓0.7→C (44 yr)↑1. Determining which of these trends is

correct may be important for advancing understanding of the mechanisms driving Southern Ocean

cooling. For example, nudging a climate model’s winds to reanalysis may not explain the magnitude

of cooling in ERSSTv5, but wind-nudging might be su”cient to explain all of the cooling in our

reconstruction. Thus the result of weaker cooling in our reconstruction supports the notion that

ozone depletion, through its influence on the SAM and surface winds, may be a key driver of the

observed SST trends (Hartmann, 2022). The possibility that our reconstruction is closer to the

true (but unknown) trend motivates revisiting investigations of Southern Ocean cooling, as well as

its impacts on the tropical Pacific and global climate (e.g., Kang et al., 2023a,c).

4.6.4 Radiative feedbacks and historical pattern e!ects

The pattern e!ect on climate sensitivity, i.e., the dependence of radiative feedbacks on spatial

patterns of SST and SIC anomalies (Armour et al., 2013; Andrews et al., 2015; Zhou et al., 2016;

Ceppi and Gregory, 2017; Andrews and Webb, 2018; Fueglistaler, 2019; Dong et al., 2019, 2020;

Cooper et al., 2024), has strong ties to the incomplete-data problem. The pattern e!ect over the

historical record (Andrews et al., 2018, 2022; Marvel et al., 2018; Salvi et al., 2023; Armour et al.,

2024) depends on what the SST patterns were in the past, and recent studies have revealed that

di!erences across infilled SST datasets lead to disparate interpretations of the historical pattern

e!ect (Fueglistaler and Silvers, 2021; Lewis and Mauritsen, 2021; Zhou et al., 2021), or possibly no

pattern e!ect at all (Modak and Mauritsen, 2023).
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Uncertainty in sea ice is typically omitted from studies of the pattern e!ect, but Andrews

et al. (2018, SI) found that di!erences in sea ice between AMIP-II and HadISST2 change the

shortwave clear-sky feedback by approximately 0.6 W m↑2 K↑1. This change from sea ice alone

is approximately the same magnitude as the total pattern e!ect over the historical record, as the

mean pattern e!ect is 0.48 W m↑2 K↑1 using HadISST1 (Andrews et al., 2022). Constraining

uncertainty in Antarctic sea ice is important for quantifying historical pattern e!ects.

We find many di!erences in the spatial patterns of SST and SIC anomalies relative to AMIP-

II and HadISST1, which have been used to account for historical pattern e!ects and quantify

variability in feedbacks over the historical record (Zhou et al., 2016; Andrews et al., 2018; Marvel

et al., 2018; Dong et al., 2019; Gregory et al., 2020; Sherwood et al., 2020; Lewis and Mauritsen,

2021; Zhou et al., 2021; Andrews et al., 2022; Salvi et al., 2023; Modak and Mauritsen, 2023). Our

reconstruction of monthly SST and SIC can be used as boundary conditions in atmospheric general

circulation models to examine the implications for historical feedbacks, pattern e!ects, and climate

sensitivity.

4.6.5 Future opportunities and caveats of the method

Future e!orts to reconstruct the historical record could improve on our results in a variety of ways,

and we list a few of them here:

• LIMs and DA: Future investigations could elaborate on optimizing the LIMs, their training

data, and possibly consider machine-learning methods (e.g., Meng and Hakim, 2024). Our

method uses climate models to train the LIMs, and therefore inherits some of the problems

in climate models. We mitigate this e!ect by using eight di!erent CMIP6 models to sample

the range of systematic uncertainty and through DA. There are many varieties of DA that

could improve on our results, including 4D-Var, quantile-conserving filtering, or multi-model

Kalman filtering with a large ensemble generated by various LIMs (Kalnay, 2003; Houtekamer

and Zhang, 2016; Anderson, 2022; Bach and Ghil, 2023). Our method assumes state variables

can be approximated with Gaussian distributions, which appears to work reasonably well for

SIC but could likely be improved in future studies.

• Pressure data: An update of non-infilled HadSLP2 (Allan and Ansell, 2006) would be helpful,
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as no quality-controlled dataset of gridded monthly mean SLP with error estimates is currently

available. ICOADS provides only marine data (Freeman et al., 2017) and does not include

observation errors. Including terrestrial pressure data (Cram et al., 2015) could improve our

reconstruction, but no gridded product exists, and elevation di!erences are a considerable

source of error.

• Sea ice: There are many observations available before the satellite era (e.g., Walsh et al.,

2019; Edinburgh and Day, 2016; Titchner and Rayner, 2014), but we do not have a current

compilation of this data in a format that can be used in reconstructions. A dataset structured

like HadSST4 or DCENT but with historical SIC observations would be helpful.

• SST: Ongoing e!orts to digitize new data, quantify error, and correct the biases of existing

data will continue to be critical (e.g., Brönnimann et al., 2019, 2024; Chan et al., 2019, 2023;

Kent and Kennedy, 2021; Kennedy et al., 2019). For SST anomalies (also T and SLP), it

would be helpful to use a climatological period that overlaps with satellite observations of

SIC (i.e., post-1979).

4.7 Conclusions

The historical record is essential to our understanding of coupled climate dynamics and variability,

but instrumental observations are sparse and noisy. Moreover, existing observational datasets are

typically derived separately for each component of the climate system, leading to inconsistencies in

coupled variability when they are combined.

In this study, we develop a method for climate reanalysis using strongly coupled data assim-

ilation. The key advance of our method compared to past work is that we (i) ensure that the

coupled atmosphere-ocean-ice state is internally consistent and (ii) synthesize observational and

dynamical constraints across all components simultaneously. Using a Kalman filter, we combine

monthly forecasts from linear inverse models (LIMs), which are trained on eight CMIP6 models

to account for model error, with observations of SST, land temperature, marine sea-level pressure,

and satellite-era sea ice.

We first validate the method through pseudo-reconstruction of an out-of-sample climate model,
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then we present the actual reconstruction on a global 2° ↑ 2° grid with monthly resolution of

SST, near-surface air temperature, sea-level pressure, and sea-ice concentration over 1850–2023.

We also provide a novel quantification of the time-varying uncertainty in all fields and its spatial

fingerprints.

In many ways, our results di!er from comparison datasets regarding how recent trends (c.

1980–present) compare to past variability. The recent evolution of the Walker circulation appears

consistent with past variability, but the SST contrast (SST#; warmest regions versus the tropi-

cal mean) exhibits a prolonged strengthening from 1975–present that appears distinct from past

variability.

In the Southern Ocean, we find a weaker SST cooling post-1980 compared to the strong cooling

in other estimates (namely ERSSTv5), which climate models have been unable to replicate. We

emphasize the observational uncertainty over the Southern Ocean, which merits more attention

due to sparse and problematic data even after 1980. The Southern Annular Mode appears well

constrained but di!ers substantially from existing estimates before 1980. Antarctic sea ice also

follows a di!erent trajectory in our reconstruction compared to other estimates over the majority

of the record (1850–1980). Our constraints on Antarctic sea ice are a key result, as we find much

less ice loss over 1900–1980 compared to existing datasets, but with large uncertainty.

Our historical reconstruction is designed for climate analysis and is publicly available. We

provide the grand mean of all 1600 ensemble members, the separate ensemble means for each of

the eight model priors, and a subset of 200 fully gridded ensemble members. Our monthly SST

and sea ice can also be used as boundary conditions in atmospheric general circulation models

(i.e., in AMIP-type simulations). Through coupled data assimilation, this reconstruction improves

constraints on coupled climate dynamics and variability, highlights key uncertainties in the historical

record, and guides future investigations into coupled atmosphere–ocean–ice interactions.

4.8 Data availability

The reconstruction will be publicly available in a Zenodo repository, accessible through Cooper

et al. (2025).

Observation data is available as follows: HadSST4.0.1.0 at https://www.metoffice.gov.uk/

hadobs/hadsst4/index.html at CRUTEM.5.0.2.0, https://www.metoffice.gov.uk/hadobs/crutem5/

https://www.metoffice.gov.uk/hadobs/hadsst4/index.html
https://www.metoffice.gov.uk/hadobs/hadsst4/index.html
https://www.metoffice.gov.uk/hadobs/crutem5/data/CRUTEM.5.0.2.0/download.html
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data/CRUTEM.5.0.2.0/download.html; ICOADS SLP at https://downloads.psl.noaa.gov/Datasets/

icoads/2degree/enh/; NOAA/NSIDC CDRv4 at https://doi.org/10.7265/efmz-2t65 and NRTv2

at https://doi.org/10.7265/tgam-yv28.

SST and SIC comparison data is available as follows: PCMDI/AMIP-II at https://aims2.

llnl.gov/ with specifier input4MIPs.CMIP6Plus.CMIP.PCMDI.PCMDI-AMIP-1-1-9; HadISST1

at https://www.metoffice.gov.uk/hadobs/hadisst/data/download.html, HadISST2.1.0.0 SST

at https://www.metoffice.gov.uk/hadobs/hadisst2/data/HadISST.2.1.0.0/index.html and

HadISST2.2.0.0 SIC at https://www.metoffice.gov.uk/hadobs/hadisst2/data/download.html;

COBE-SST2 at https://downloads.psl.noaa.gov/Datasets/COBE2/; ERSSTv5 from https:

//www.ncei.noaa.gov/products/extended-reconstructed-sst or https://doi.org/10.5065/

JZ08-3W17. Brennan and Hakim (2022) is available at https://doi.org/10.5281/zenodo.5809703

GMSAT comparison data is available as follows: BEST at https://climate.metoffice.

cloud/temperature.html; HadCRUT5 at https://www.metoffice.gov.uk/hadobs/hadcrut5/

data/HadCRUT.5.0.2.0/download.html.

SLP comparison data is available as follows: NOAA/CIRES/DOE 20th Century Reanalysis

(V3) and additional datasets listed here are provided by the NOAA PSL, Boulder, Colorado, USA,

from their website at https://psl.noaa.gov; NCEP/NCAR Reanalysis at https://downloads.

psl.noaa.gov//Datasets/ncep.reanalysis/Monthlies/surface/; ERA5 post-1979 at https:

//doi.org/10.5065/P8GT-0R61 and 1950–1978 back extension at https://doi.org/10.5065/

JAXB-X906; HadSLP2 at https://www.metoffice.gov.uk/hadobs/hadslp2/data/download.html;

King et al. (2023) at https://doi.org/10.5281/zenodo.8156908; O’Connor et al. (2021) at

https://doi.org/10.5281/zenodo.5507607; Dalaiden et al. (2021) at https://doi.org/10.

5281/zenodo.4770179; Fogt et al. (2009) at https://polarmet.osu.edu/ACD/sam/sam_recon.

html; Falster et al. (2023) at https://doi.org/10.5281/zenodo.8280559.

CMIP6 output is available on NCAR Glade and at https://esgf-node.llnl.gov/search/

cmip6/.

https://www.metoffice.gov.uk/hadobs/crutem5/data/CRUTEM.5.0.2.0/download.html
https://www.metoffice.gov.uk/hadobs/crutem5/data/CRUTEM.5.0.2.0/download.html
https://downloads.psl.noaa.gov/Datasets/icoads/2degree/enh/
https://downloads.psl.noaa.gov/Datasets/icoads/2degree/enh/
https://doi.org/10.7265/efmz-2t65
https://doi.org/10.7265/tgam-yv28
https://aims2.llnl.gov/
https://aims2.llnl.gov/
https://www.metoffice.gov.uk/hadobs/hadisst/data/download.html
https://www.metoffice.gov.uk/hadobs/hadisst2/data/HadISST.2.1.0.0/index.html
https://www.metoffice.gov.uk/hadobs/hadisst2/data/download.html
https://downloads.psl.noaa.gov/Datasets/COBE2/
https://www.ncei.noaa.gov/products/extended-reconstructed-sst
https://www.ncei.noaa.gov/products/extended-reconstructed-sst
https://doi.org/10.5065/JZ08-3W17
https://doi.org/10.5065/JZ08-3W17
https://doi.org/10.5281/zenodo.5809703
https://climate.metoffice.cloud/temperature.html
https://climate.metoffice.cloud/temperature.html
https://www.metoffice.gov.uk/hadobs/hadcrut5/data/HadCRUT.5.0.2.0/download.html
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4.9 Appendix

4.9.1 Summary of LIM training data

Model Total Years (piControl range) Ens. Mem. EOFs Reference

CESM2 1166 (200–1200) r1i1p1f1 408 Danabasoglu et al. (2020)

UKESM1.0 1754 (2250–3839) r1i1p1f2 408 Sellar et al. (2019)

SAM0-UNICON 865 (1–700) r1i1p1f1 306 Park et al. (2019)

GFDL-ESM4 665 (1–500) r1i1p1f1 306 Dunne et al. (2020)

NorESM2-LM 666 (1600–2100) r1i1p1f1 306 Seland et al. (2020)

EC-Earth3 1165 (2103–3102) r2i1p1f1 408 Döscher et al. (2022)

HadGEM3-GC31-LL 2165 (1850–3849) r1i1p1f1 408 Kuhlbrodt et al. (2018)

E3SM-2 665 (1–500) r1i1p1f1 306 Qin et al. (2024)

Table 4.1: CMIP6 training data for 8 linear inverse models. All models with 408 EOFs have the

following distribution across state variables: 108 SST, 108 T, 48 SLP, 72 Arctic SIC, 72 Antarctic

SIC. Models with 306 EOFs have 92 SST, 84 T, 30 SLP, 50 Arctic SIC, 50 Antarctic SIC. Note

that Total Years includes piControl plus 165 years of historical simulation (1850–2014).
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4.9.2 Observation error for sea-level pressure

To estimate R for observations of monthly mean SLP, we apply a method similar to that in Kaplan

et al. (2000). The intramonth standard deviation (s) provided by ICOADS is comprised of sub-

monthly variability, measurement error, and representativeness error, thus providing an estimate

of the observation error in the monthly mean (Leith, 1973). We take the local time-average of

s2 nobs

nobs↑1 over the well observed period 1961–2023 to estimate the climatological error variance, ε2,

in the monthly mean for each gridcell, and we restrict the estimate to gridcells with nobs > 30 in a

given month. Again using a similar approach to Kaplan et al. (2000), we then spatially smooth the

resulting climatological maps of ε using a running-mean window of 12° latitude ↑ 50° longitude

equatorward of 52°N/S and a window of 18° latitude ↑ 100° longitude poleward of 52°N/S. This

results in 12 monthly 2° ↑ 2° fields of the random measurement and sampling error, εrandom.

We then must assign a time-varying error, ε, to each monthly value of SLP. We start with

the random error described above, then reduce the random error by the number of intramonth

observations in a gridcell. To account for autocovariance and possible sampling errors even when

nobs is large, reduce nobs to nadjusted = nobs/2, and we set the maximum of nadjusted at 30 (Leith,

1973; Bretherton et al., 1999). We then consider the systematic component of the total error,

ε2 = ε2
systematic+ε2

random/nadjusted, as discussed in Kennedy (2014). We estimate ε2
systematic from the

variance across neighboring observations. The idea is that if neighboring observations consistently

di!er, the di!erences are from irreducible, systematic errors. Separately for each month from

1961–2023, we calculate the spatial variance across a running-mean window of 16° latitude ↑ 32°

longitude, restricting the calculation to gridcells with nobs ≃ 5. We use the zonal mean of the

climatology of this field to represent ε2
systematic. We make one adjustment by setting the minimum

εsystematic at 6 hPa south of 72°S, preventing the error from decreasing near the Antarctic coastline.

The systematic error ranges from approximately 1 hPa on the equator to 7 hPa in polar regions,

with a local maximum of 9.5 hPa over the Southern Ocean at 55°S.

4.9.3 Supplemental information

Supplemental Figures 4.S1–S17.
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Figure 4.S1: Pseudo-reconstruction of MPI-ESM1-2-HR: correlation and Nash-Sutcli!e e”ciency

(NSE) for SST, SLP, and T. (Left) Local correlation (R) of ensemble-mean reconstruction with

the target monthly values from MPI-ESM1-2-HR, separately for 1850–1949 and 1950–2014; global

mean of local R is shown in upper right. (Right) Same as left column but showing the local NSE,

with the global mean of the local NSE shown in upper right.



142

Figure 4.S2: Pseudo-reconstruction of MPI-ESM1-2-HR: correlation (R) and Nash-Sutcli!e e”-

ciency for sea-ice concentration (SIC). (Left column) Local correlation of ensemble mean from the

reconstruction with the true annual values from MPI-ESM1-2-HR’s historical simulation, separately

for 1850–1979 and 1980–2014, and the global-mean of local correlations is shown in upper right.

(Right column) Same as left column but showing the Nash-Sutcli!e E”ciency (NSE), with the

global mean of the local NSE shown in upper right.
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Figure 4.S3: Pseudo-reconstruction of MPI-ESM1-2-HR, using only a single model prior. Same

as Figure 4.S1, but using only the LIM trained on CESM2 to produce the pseudo-reconstruction

(i.e., excluding the other model priors). Compare with Figure 4.S1 to see the benefit of including

multiple priors in the reconstruction.
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Figure 4.S4: Pseudo-reconstruction of MPI-ESM1-2-HR, using only a single model prior. Same as

Figure 4.S2, but using only the linear inverse model trained on CESM2 to produce the pseudo-

reconstruction (i.e., excluding the other model priors). Compare with Figure 4.S2 to see the benefit

of including multiple priors in the reconstruction.
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Figure 4.S5: Validation by pseudo-reconstruction of MPI-ESM1-2-HR: squared Pearson’s corre-

lation and Nash-Sutcli!e e”ciency by month. Metrics on the vertical axis correspond to those

in Figure 4.2 but the calculations are based on the monthly resolved data without any low-pass

filtering. The horizontal axis represents months January–December. Calculation is over the full

pseudo-reconstruction period (1850–2014).
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Figure 4.S6: Desroziers validation statistics. (Left column) Actual versus expected RMSE averaged

for sea-surface temperature over (a) the Northern Hemisphere from 20°–90°N, (b) the Tropics

from 20°S–20°N, and (c) the Southern Hemisphere from 20°–90°S. The annual-mean number of

observations assimilated per month is shown in gray (right vertical axis). Note that the vertical

axes di!er between subplots. (Middle column) Same as left column for sea-level pressure. (Right

column) Same as left column for near-surface air temperature. All time series show annual means.
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Figure 4.S7: Select point locations for comparing reconstruction to HadSST4 in following figures.

Black dots indicate the locations shown in Figures 4.S8–S14. The SST plotted shows a single

monthly mean, illustrating the January 2023 reconstruction anomaly relative to the 1961–1990

climatology.
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Figure 4.S8: North Atlantic. (a) Timeseries of SST anomalies in a single gridcell from the data

assimilation (DA) ensemble-mean posterior versus the HadSST4 data. (b) Analysis residuals, i.e.,

the SST di!erence between the DA posterior and HadSST4 data shown, corresponding to panel

a; Diagonal terms in R, i.e., the measurement and sampling error (±2ε), shown as shading. DA

result is regridded to the coarser 5° resolution of HadSST4 for the comparison.
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Figure 4.S9: South Atlantic. See caption of Figure 4.S8.
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Figure 4.S10: North Pacific. See caption of Figure 4.S8.
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Figure 4.S11: North Pacific. See caption of Figure 4.S8.
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Figure 4.S12: Indian Ocean. See caption of Figure 4.S8.
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Figure 4.S13: Southeast Pacific. See caption of Figure 4.S8.
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Figure 4.S14: Southern Ocean (SE Pacific sector). See caption of Figure 4.S8.
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Figure 4.S15: Antarctic sea ice area, 1958–2023. As shown in Figure 4.5 but limited to recent

decades. Data assimilation results are shown in blue (mean, 66% range, and 90% range). All

timeseries are filtered with a 12-month running mean of the monthly means. Anomalies are relative

to the 1961–1990 baseline.
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Figure 4.S16: Seasonal values of the Southern Annular Mode (SAM). As shown in Figure 4.5 but

for separate seasons. Data assimilation results are shown in blue (mean, 66% range). All timeseries

are filtered with a 10-year low-pass filter on the monthly means. Anomalies are relative to the

1961–1990 baseline.
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Figure 4.S17: Sea ice area versus global-mean near-surface air temperature (GMSAT). Using annual

means of the results from data assimilation shown in Figure 4.5, (a) scatter plot of anomalies in

total Arctic sea ice area versus anomalies in GMSAT, and (b) repeated for the Antarctic.
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Chapter 5

CONCLUSIONS

In this dissertation, we have analyzed paleoclimates and the historical record to develop a better

understanding of climate sensitivity and coupled variability. We found that paleoclimates provide

a stronger constraint on climate sensitivity and future warming after accounting for paleoclimates’

distinct patterns of temperature change and their associated radiative feedbacks. For the recent

historical record (1850–present), we used coupled data assimilation to synthesize observational and

dynamical constraints on climate variability and trends, thus providing a physically consistent

reconstruction of Earth’s surface climate over the past 170 years.

In Chapter 2, we investigated the relationship between radiative feedbacks and the spatial

pattern of SST in the Last Glacial Maximum (LGM). We found that the LGM temperature pattern

is associated with cloud feedbacks that amplify the temperature change. The SST pattern and its

amplifying feedbacks are attributable to the LGM’s massive North American ice sheet rather than

the LGM’s direct response reduced CO2 levels. Accounting for such pattern e!ects in the LGM

evidence leads to stronger constraints on modern climate sensitivity.

In Chapter 3, we investigated radiative feedbacks in the Pliocene, a past warm period with CO2

levels similar to present day (approximately 400 ppm). We found that non-CO2 forcings, such as

ice sheets, topography, and vegetation, amplified Pliocene warming through their influence on SST

patterns and cloud feedbacks over the North Atlantic and Southern Ocean. Because the Pliocene’s

non-CO2 forcings play a large role in amplifying Pliocene warming, but they do not play a role in the

modern response to CO2 alone, modern climate sensitivity is lower than previously assessed from

Pliocene evidence. We combine our analysis of the warm Pliocene with Chapter 2’s investigation of

the cold LGM, and we find that accounting for paleoclimate pattern e!ects produces a best estimate

(median) for modern climate sensitivity of 2.8→C, 66% range 2.4 ↓ 3.4→C (90% CI : 2.1 ↓ 4.0→C),

substantially reducing uncertainty and narrowing projections of 21st-century warming.

In Chapter 4, we turned our attention to the historical record (1850–2023), inspired by the
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uncertainty in SST patterns and sea ice that impacts historical constraints on climate sensitivity

and variability. We presented a method combining linear inverse models, which we use to fore-

cast Earth’s surface climate (SST, near-surface air temperature, sea-level pressure, and sea ice)

at monthly resolution, with strongly coupled data assimilation. We used this method to constrain

the coupled climate state based on the dynamics of the models and the observations across the

atmospheric and oceanic fields. In our reconstruction, we find that recent trends (post-1980) in

the Walker circulation are more consistent with past variability, whereas the tropical SST con-

trast (the di!erence between warmer and colder SSTs) shows a distinct strengthening since 1975.

ENSO amplitude exhibits substantial low-frequency variability and a local maximum in variance

over 1875–1910. In the Southern Ocean, we find a muted cooling trend in SST with substantial

uncertainty and that changes in Antarctic sea ice are relatively small between 1850 and 2000.

Together, the chapters of this thesis highlight the importance of past patterns of temperature

change in understanding modern climate sensitivity and variability. Spatial information plays a

pivotal role in constraining climate feedbacks and sensitivity, hence analyses with a limited focus

only on global-mean changes lead to flawed inferences of modern climate sensitivity. The informa-

tion on spatial patterns in this dissertation is a product of data assimilation, which is the core of the

current revolution in combining models and data. Accounting for paleoclimate pattern e!ects leads

to stronger constraints on future warming and especially on the persistently uncertain upper bound

of modern climate sensitivity. Additionally, a new reconstruction and analysis using instrumen-

tal data (1850–2023) provides an internally consistent, dynamically constrained perspective on the

historical climate record. We clarify many long-standing uncertainties surrounding the tropical Pa-

cific and the Southern Ocean by synthesizing surface observations across the atmosphere and ocean.

This dissertation demonstrates the value of paleoclimate and historical records in understanding

modern and future climate.
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R. I., Grant, A. N., Groisman, P. Y., Jones, P. D., Kruk, M. C., Kruger, A. C., Marshall, G. J.,

Maugeri, M., Mok, H. Y., Nordli, Ø., Ross, T. F., Trigo, R. M., Wang, X. L., Woodru!, S. D.,

http://scholar.google.com/scholar_lookup?&title=Carbon%20Dioxide%20and%20Climate%3A%20A%20Scientific%20Assessment&publication_year=1979&author=Charney%2CJ
http://scholar.google.com/scholar_lookup?&title=Carbon%20Dioxide%20and%20Climate%3A%20A%20Scientific%20Assessment&publication_year=1979&author=Charney%2CJ
http://scholar.google.com/scholar_lookup?&title=Carbon%20Dioxide%20and%20Climate%3A%20A%20Scientific%20Assessment&publication_year=1979&author=Charney%2CJ


169

and Worley, S. J.: The Twentieth Century Reanalysis Project, Quart. J. Roy. Meteor. Soc., 137,

1–28, https://doi.org/10.1002/qj.776, 2011.

Cook, B. I., Smerdon, J. E., Cook, E. R., Williams, A. P., Anchukaitis, K. J., Mankin, J. S., Allen,

K., Andreu-Hayles, L., Ault, T. R., Belmecheri, S., Coats, S., Coulthard, B., Fosu, B., Grierson,

P., Gri”n, D., Herrera, D. A., Ionita, M., Lehner, F., Leland, C., Marvel, K., Morales, M. S.,

Mishra, V., Ngoma, J., Nguyen, H. T. T., O’Donnell, A., Palmer, J., Rao, M. P., Rodriguez-

Caton, M., Seager, R., Stahle, D. W., Stevenson, S., Thapa, U. K., Varuolo-Clarke, A. M., and

Wise, E. K.: Megadroughts in the Common Era and the Anthropocene, Nature Reviews Earth

& Environment, 3, 741–757, https://doi.org/10.1038/s43017-022-00329-1, 2022.

Cook, K. H. and Held, I. M.: Stationary Waves of the Ice Age Climate, J. Climate, 1, 807–819,

https://doi.org/10.1175/1520-0442(1988)001↗0807:SWOTIA↘2.0.CO;2, 1988.

Cooper, V. T., Roach, L. A., Thomson, J., Brenner, S. D., Smith, M. M., Meylan, M. H., and

Bitz, C. M.: Wind waves in sea ice of the western Arctic and a global coupled wave-ice model,

Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering

Sciences, 380, https://doi.org/10.1098/rsta.2021.0258, 2022.

Cooper, V. T., Armour, K. C., Hakim, G. J., Tierney, J. E., Osman, M. B., Proistosescu, C., Dong,

Y., Burls, N. J., Andrews, T., Amrhein, D. E., Zhu, J., Dong, W., Ming, Y., and Chmielowiec,

P.: Last Glacial Maximum pattern e!ects reduce climate sensitivity estimates, Science Advances,

10, 9461, https://doi.org/10.1126/sciadv.adk9461, 2024.

Cooper, V. T., Hakim, G. J., and Armour, K. C.: Monthly Sea-Surface Temperature, Sea Ice,

and Sea-Level Pressure over 1850–2023 from Coupled Data Assimilation, Journal of Climate (in

review), https://doi.org/10.31223/X5JH8K, 2025.

Cornes, R. C., Kent, E., Berry, D., and Kennedy, J. J.: CLASSnmat: A global night marine

air temperature data set, 1880–2019, Geoscience Data Journal, 7, 170–184, https://doi.org/

10.1002/gdj3.100, 2020.

Cowtan, K. and Way, R. G.: Coverage bias in the HadCRUT4 temperature series and its impact



170

on recent temperature trends, Quart. J. Roy. Meteor. Soc., 140, 1935–1944, https://doi.org/

10.1002/qj.2297, 2014.

Cowtan, K., Rohde, R., and Hausfather, Z.: Evaluating biases in sea surface temperature records

using coastal weather stations, Quart. J. Roy. Meteor. Soc., 144, 670–681, https://doi.org/10.

1002/qj.3235, 2018.

Cram, T. A., Compo, G. P., Yin, X., Allan, R. J., McColl, C., Vose, R. S., Whitaker, J. S.,

Matsui, N., Ashcroft, L., Auchmann, R., Bessemoulin, P., Brandsma, T., Brohan, P., Brunet,

M., Comeaux, J., Crouthamel, R., Gleason, B. E., Groisman, P. Y., Hersbach, H., Jones, P. D.,

Jónsson, T., Jourdain, S., Kelly, G., Knapp, K. R., Kruger, A., Kubota, H., Lentini, G., Lorrey,

A., Lott, N., Lubker, S. J., Luterbacher, J., Marshall, G. J., Maugeri, M., Mock, C. J., Mok,

H. Y., Nordli, Ø., Rodwell, M. J., Ross, T. F., Schuster, D., Srnec, L., Valente, M. A., Vizi, Z.,

Wang, X. L., Westcott, N., Woollen, J. S., and Worley, S. J.: The International Surface Pressure

Databank version 2, Geoscience Data Journal, 2, 31–46, https://doi.org/10.1002/gdj3.25, 2015.

Crucifix, M.: Does the Last Glacial Maximum constrain climate sensitivity?, Geophys. Res. Lett.,

33, L18 701, https://doi.org/10.1029/2006GL027137, 2006.

Czaja, A., Frankignoul, C., Minobe, S., and Vannière, B.: Simulating the Midlatitude Atmospheric

Circulation: What Might We Gain From High-Resolution Modeling of Air-Sea Interactions?, Cur-

rent Climate Change Reports, 5, 390–406, https://doi.org/10.1007/s40641-019-00148-5, 2019.
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Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M., Huang, M., Leitzell, K., Lonnoy, E.,

Matthews, J., Maycock, T., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., chap. 7, Cambridge
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Hegerl, G. C., Brönnimann, S., Schurer, A., and Cowan, T.: The early 20th century warming:

Anomalies, causes, and consequences, WIREs Climate Change, 9, https://doi.org/10.1002/wcc.

522, 2018.
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