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C L I M AT O L O G Y

Last Glacial Maximum pattern effects reduce climate 
sensitivity estimates
Vincent T. Cooper1*, Kyle C. Armour1,2, Gregory J. Hakim1, Jessica E. Tierney3, Matthew B. Osman4, 
Cristian Proistosescu5, Yue Dong6, Natalie J. Burls7, Timothy Andrews8, Daniel E. Amrhein9,  
Jiang Zhu9, Wenhao Dong10,11, Yi Ming12, Philip Chmielowiec5†

Here, we show that the Last Glacial Maximum (LGM) provides a stronger constraint on equilibrium climate sensi-
tivity (ECS), the global warming from increasing greenhouse gases, after accounting for temperature patterns. 
Feedbacks governing ECS depend on spatial patterns of surface temperature (“pattern effects”); hence, using the 
LGM to constrain future warming requires quantifying how temperature patterns produce different feedbacks 
during LGM cooling versus modern- day warming. Combining data assimilation reconstructions with atmospheric 
models, we show that the climate is more sensitive to LGM forcing because ice sheets amplify extratropical cooling 
where feedbacks are destabilizing. Accounting for LGM pattern effects yields a median modern- day ECS of 2.4°C, 
66% range 1.7° to 3.5°C (1.4° to 5.0°C, 5 to 95%), from LGM evidence alone. Combining the LGM with other lines of 
evidence, the best estimate becomes 2.9°C, 66% range 2.4° to 3.5°C (2.1° to 4.1°C, 5 to 95%), substantially narrow-
ing uncertainty compared to recent assessments.

INTRODUCTION
Equilibrium climate sensitivity (ECS) is the steady- state response of 
global mean near- surface air temperature to a doubling of atmospher-
ic CO2 from preindustrial levels. ECS is a focus of climate policy and 
projections because it governs Earth’s long- term response to anthro-
pogenic greenhouse gas changes (1, 2). Recently, the World Climate 
Research Programme’s 2020 climate sensitivity assessment, hereafter 
“WCRP20” (1), updated the 66% “likely” range for ECS to 2.6° to 
3.9°C (2.3° to 4.7°C, 5 to 95%) with a central estimate of 3.1°C, which 
informed the “likely” range of 2.5° to 4.0°C (2.0° to 5.0°C, “very likely”) 
and central estimate of 3°C in the Intergovernmental Panel on Cli-
mate Change's Sixth Assessment Report (“IPCC AR6”) (2). This nar-
rowing of uncertainty compared to previous assessments was achieved 
by quantitatively combining evidence from process understanding of 
climate feedbacks, observations over the historical record (1870 to 
present), and paleoclimate reconstructions of past cold and warm pe-
riods. Of these lines of evidence, paleoclimate data from the Last Gla-
cial Maximum (LGM), approximately 21,000 years ago, provide a 
leading constraint on the upper bound of ECS (1–3).

Using paleoclimate data to constrain modern- day ECS requires 
accounting for how climate feedbacks change across different climate 
states (1, 2, 4–9). The standard assumption is that colder climates are 

less sensitive (i.e., have more- negative feedbacks) than warmer states 
(1, 2, 5–9). However, the simple assumption that feedbacks change 
with global mean temperature does not account for how feedbacks 
depend on changing spatial patterns of sea- surface temperature 
(SST), a phenomenon known as the SST “pattern effect” (10–15).

A robust understanding of the SST pattern effect has been devel-
oped in the context of recent warming. Over the past century, SSTs have 
warmed more in the tropical west Pacific and less in the east Pacific and 
Southern Ocean (12, 16, 17). SST changes in tropical regions of deep 
convection (e.g., the west Pacific) produce strongly negative (stabiliz-
ing) feedbacks, whereas SST changes in regions with reflective low 
clouds (e.g., the east Pacific) or sea ice produce relatively positive (desta-
bilizing) feedbacks (11–15, 18). This transient pattern of SST trends is 
expected to reverse in the future as the tropical east Pacific and Southern 
Ocean eventually warm at higher rates, producing more- positive feed-
backs and a more- sensitive climate at equilibrium (15, 19, 20). Accounting 
for this transient pattern effect causes the historical record to become a 
weak constraint on high values of ECS (1, 2, 16, 17, 21), leaving the 
LGM as a leading constraint on the ECS upper bound (1).

However, pattern effects have not been accounted for in LGM evi-
dence for modern- day ECS (1–3, 5, 22). If the spatial pattern of SST 
change in equilibrium at the LGM differs from the pattern of future 
warming, then the climate feedbacks governing climate sensitivity 
will differ as well. Continental ice sheets are responsible for approxi-
mately half of the total LGM forcing (3, 23, 24) and drive distinct cli-
mate responses from changes in topography, albedo, and sea level (23, 
25–30), suggesting that patterns of SST change at the LGM may differ 
substantially from those in response to a modern- day doubling of 
CO2. Previous work acknowledged this possibility (1, 2) but did not 
account for LGM pattern effects because no quantification had yet 
been made. A key question is, would accounting for LGM pattern ef-
fects strengthen or weaken constraints on modern- day ECS?

Here, we quantify the LGM pattern effect and its uncertainty by 
leveraging two recent advances. First, with the advent of paleoclimate 
data assimilation (31), spatially complete reconstructions of SST 
and sea ice now exist for the LGM (3, 32–34), including estimated 
uncertainties. Second, recent progress in quantifying pattern effects 
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(16, 17) provides methods using atmospheric general circulation 
models (AGCMs) to link SST patterns to climate feedbacks. These ad-
vances present an opportunity to compare SST changes at the LGM 
with those expected under anthropogenic CO2 forcing and to quan-
tify resulting differences in climate feedbacks and sensitivity. To assess 
the robustness of our results, we use five AGCMs (sampling uncer-
tainty in how feedbacks relate to SST patterns) and four reconstruc-
tions (3, 32–34) of the LGM (sampling uncertainty in SST patterns).

Dependence of modern- day ECS on pattern effects
ECS and climate feedbacks are connected through the standard model 
of global mean energy balance

where N is the top- of- atmosphere radiative imbalance; λ is the net 
climate feedback (negative for stable climates); T is the near- surface 
air temperature; and F is the “effective” radiative forcing, i.e., the 
change in net downward radiative flux after atmospheric adjustments 
to imposed perturbations but excluding radiative responses to chang-
ing surface temperature (1, 2). Differences (Δ) are relative to an equi-
librium reference state, e.g., the preindustrial period. When the 
forcing is a CO2 doubling (2xCO2) of preindustrial values, and the 
climate system reaches equilibrium (ΔN  =  0), the resulting ΔT is 
referred to as the ECS

where ΔF2x is the effective radiative forcing (ERF), and λ2x is the net 
feedback for 2xCO2. More- negative values of λ2x indicate a less- 
sensitive climate (lower ECS).

Here, we aim to quantify the difference in feedbacks (Δλ) operating 
in the modern climate under 2xCO2 (λ2x) and at the LGM (λLGM)

Following recent research on pattern effects in the historical record 
(1, 16, 17), we estimate λ2x and λLGM using AGCM simulations with SST 
and sea- ice concentration (SIC) prescribed as surface boundary condi-
tions. We further evaluate the contributions to Δλ from pattern effects 
and global mean temperature changes between the LGM and 2xCO2.

To infer the modern- day ECS from LGM evidence, Eqs. 2 and 3 
can be combined (1, 16) to yield

where λ∗LGM is the estimate of the unadjusted LGM feedback (deter-
mined using Eq. 1 applied to that state), which we take from previous 
assessments (1–3), and Δλ is estimated from our AGCM simulations. 
The value of Δλ depends on spatial patterns of LGM SST and SIC 
anomalies, for which we use state- of- the- art reconstructions (3, 32–
34) based on data assimilation.

RESULTS
Using data assimilation reconstructions to quantify 
pattern effects
Similar to Bayesian statistics, paleoclimate data assimilation (31) be-
gins with a “prior” estimate of the climate state from model ensembles. 
Proxy data provide indirect climate observations that update the prior, 
balancing relative error in the prior and the observations. This results 
in a “posterior” state estimate, constrained by observations and ac-
counting for uncertainty in priors and data. Since the posterior is 
sensitive to priors (35, 36), proxies, and methods, we sample this un-
certainty by using multiple reconstructions.

Figure 1 shows the four SST reconstructions (Materials and Meth-
ods) we use to quantify the LGM pattern effect. All four reconstruc-
tions have a prominent common feature: amplified extratropical 
cooling in both the North Pacific and North Atlantic Oceans. While 
the LGM reconstructions differ in other regions that are important for 
climate feedbacks, e.g., the tropical Pacific (11–15) and Southern 

ΔN = λΔT +ΔF (1)

ECS = −ΔF2x ∕λ2x (2)

Δλ = λ2x − λLGM (3)

ECS =
− ΔF2x

λ∗
LGM

+Δλ
(4)

Fig. 1. Patterns of SST anomalies from data assimilation at the LGM compared to modern- day doubling of CO2 (2xCO2). LGM reconstructions include (A) LGMR (32), 
(B) Amrhein (34), (C) lgmDA (3), (D) Annan (33), and (E) shows the mean of the four LGM patterns. (F) Pattern of the multimodel mean from near- equilibrium 2xCO2 simu-
lations in LongRunMIP (39), initialized from preindustrial control. To show SST patterns, local SST anomalies are divided by absolute values of global mean SST anomalies. 
All panels show annual means. LGM reconstructions are infilled to modern coastlines (Materials and Methods).
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Ocean (19, 37, 38), their robust agreement in the northern extratropics 
proves to be essential for the LGM pattern effect. The zonally consis-
tent maximum near 40°N in SST anomalies at the LGM is in strong 
contrast to the near- equilibrium response to modern- day 2xCO2 
(Fig. 1F and fig. S1) as simulated by climate models in LongRunMIP 
(Materials and Methods) (39), suggesting the potential for feedbacks to 
differ between LGM and 2xCO2 climates. Using data- constrained pat-
terns to quantify how LGM feedbacks compare to feedbacks in 2xCO2 
is an advance over past comparisons (all based on models), which have 
produced conflicting results (text S1) (22, 23, 40–44). While our meth-
od overcomes the problem of unconstrained SST patterns from 
coupled atmosphere- ocean simulations of the LGM, we still rely on 
AGCMs to estimate feedbacks and their uncertainties.

We calculate net feedbacks using AGCMs with prescribed SST 
and SIC. We first conduct AGCM simulations with a “baseline” pat-
tern representing the preindustrial climate, for which we use SST and 
SIC in the Late Holocene (mean of 0 to 4000 years ago) from the 
LGM Reanalysis (LGMR) (32). We then perform AGCM simulations 
with SST and SIC (Materials and Methods) from 2xCO2 in 
LongRunMIP (39) and the four LGM reconstructions (3, 32–34) 
(SST in Fig. 1; SIC in fig. S2). Last, we calculate global mean ΔN and 
ΔT in each 2xCO2 and LGM simulation relative to the baseline, 
which yields net feedbacks as λ = ΔN/ΔT using Eq. 1. All forcings are 
held constant (ΔF = 0) at modern- day levels across our AGCM sim-
ulations; therefore, all changes in simulated top- of- atmosphere radi-
ation and feedbacks can be attributed solely to SST/SIC differences 
(Materials and Methods).

We find that λ2x is more negative (stabilizing) than λLGM, indi-
cating that the climate system is more sensitive to LGM forcing 
than to 2xCO2 (Fig. 2). We use the LGMR pattern (Fig. 1A) in five 
AGCMs (CAM4, CAM5, CAM6, GFDL- AM4, and HadGEM3- 
GC3.1- LL) to evaluate uncertainty from atmospheric model phys-
ics, and we use all four LGM reconstructions (Fig. 1, A to D) in 
CAM4 and CAM5 to evaluate uncertainty from LGM patterns. 
This approach is supported by the result that AGCMs tend to re-
produce observed relationships between SSTs and top- of- atmosphere 
radiation when observed SST patterns are prescribed (45, 46). The 
LGM pattern effect, Δλ in Eq. 3, is negative across all five AGCMs 
and all four LGM reconstructions. The five AGCMs produce a 
mean Δλ = −0.40 Wm−2 K–1 (Fig. 2B; detailed results in tables S1 
and S2). We also evaluate uncertainty in the 2xCO2 pattern but 
find that this is of secondary importance (Materials and Methods; 
figs. S3 and S4). Our main result is that the climate is more sensi-
tive to LGM forcing than it is to modern- day 2xCO2 forcing 
(Δλ < 0), implying lower estimates of modern- day ECS by Eq. 4, 
and this finding is robust despite uncertainties in atmospheric 
physics and LGM reconstructions.

DISCUSSION
Physical mechanisms driving LGM pattern effects
For comparison with our feedbacks in AGCMs driven by LGM recon-
structions, we examine previously published results (23) from AGC-
Ms coupled to mixed- layer “slab” oceans (Fig. 2), which allow SST 
changes in response to imposed forcings but exclude changes in ocean 
dynamics (47). These mixed- layer model versions of CESM1- CAM5 
(23), CESM2- CAM6 (48), and CESM2- PaleoCalibr (49) (using a 
modified CAM6), which differ from our AGCM experiments by in-
cluding forcings from ice sheets and greenhouse gases, also produce 

Δλ < 0. Although disagreements in simulated SST patterns compared 
to proxy data suggest that free- running coupled models cannot reli-
ably estimate the value of Δλ, the coupled models point to mecha-
nisms driving Δλ that are consistent with the reconstructions and our 
AGCM simulations. In this section, we begin by reviewing simula-
tions in coupled models that demonstrate the physical mechanisms 
linking patterns of forcing, SST response, and climate feedbacks.

First, we compare zonal mean patterns of ERF and SST changes 
from CESM1- CAM5 simulations (23) under three forcing scenarios: 
2xCO2 forcing, LGM forcing (ice sheets and greenhouse gases), and 

Fig. 2. LGM and 2xCO2 climate feedbacks and LGM pattern effect (Δλ). Different 
AGCMs, all using the LGMR pattern for the LGM, are indicated by symbols; different 
LGM patterns (in CAM5 and CAM4) are indicated by colors. Error bars for Annan and 
LGMR represent first and fourth quartiles of ensemble members (Materials and 
Methods); central values indicate ensemble mean. For comparison with AGCM results 
using LGM data assimilation, the following feedbacks (in a mixed- layer ocean coupled 
to AGCM) from previous studies are also included: CESM1- CAM5 (23), CESM2- CAM6 
(48), and CESM2- PaleoCalibr (49) (modified version of CAM6). (A) Scatterplot of 2xCO2 
feedbacks, λ2x, versus LGM feedbacks, λLGM, with λ2x = λLGM shown as dotted line. (B) 
LGM pattern effect, Δλ = λ2x − λLGM, using feedbacks shown in (A), with Δλ = 0 shown 
as dotted line. Note that Δλ includes SST pattern effects and contributions from tem-
perature dependence.
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LGM ice- sheet forcing alone (including coastline changes). The local-
ized ice- sheet forcing causes the amplified SST response in the north-
ern extratropics at the LGM compared to 2xCO2 (Fig.  3, A to C). 
Explaining the Northern Hemisphere’s response to LGM ice sheets 
has been a focus of previous studies, which found that amplified SST 
cooling in the northern extratropics is associated with changes in at-
mospheric stationary waves, driven by changes in ice- sheet albedo 
and topography (23, 29, 30, 50). Differences in SST responses between 
LGM and 2xCO2 persist at quasi- equilibrium in a fully coupled 
(atmosphere- ocean GCM) version of CESM1- CAM5 (Fig.  3C and 
fig. S5). Comparing the fully coupled model’s response (Fig. 3C) to 
LGM forcing with the data assimilation patterns (Fig. 3D) that we use 
to quantify pattern effects supports the finding that LGM ice sheets 
amplify SST cooling in the northern extratropics (23, 29, 30), but this 
cooling pattern is more pronounced in proxy reconstructions. The 
amplified cooling of extratropical SST, driven by ice- sheet forcing, 
causes the LGM feedback to be less stabilizing than the feedback in-
duced by CO2 forcing alone.

Decomposing λ from our AGCM simulations into component 
feedbacks (fig. S6), including results from direct model output and 

from radiative kernels (Materials and Methods), shows that short-
wave cloud feedbacks are responsible for much of the negative value 
of Δλ and for much of the spread across AGCMs. The combined feed-
back from changes in lapse rate and water vapor also contributes to 
negative values of Δλ. While shortwave clear- sky feedbacks from sea 
ice and snow are also more positive for the LGM, cloud masking 
strongly damps the impact of those LGM feedbacks. Accounting for 
cloud masking (51, 52), feedbacks from surface albedo are more posi-
tive in 2xCO2, i.e., contribute a positive Δλ, offsetting the negative 
total Δλ. Overall, our results align with the previous studies focused 
on the historical record that emphasize cloud and lapse- rate feed-
backs in pattern effects (11, 13, 15, 20).

Spatial distributions of feedbacks (fig. S7) clarify the connection 
between ice- sheet forcing, SST response, and cloud feedbacks. Where 
the SST cooling from LGM ice sheets is amplified in the North Pacific 
and North Atlantic, positive shortwave cloud feedbacks are promi-
nent because of increases in reflective low clouds (11–15, 18, 30). 
Compared to 2xCO2 simulations, LGM reconstructions have rela-
tively small SST anomalies in tropical ascent regions (fig. S1) where 
feedbacks are most negative (11–14, 18, 37). However, tropical pat-
terns at the LGM differ across reconstructions, adding to the uncer-
tainty in the LGM pattern effect. Despite these differences in the 
tropics, all four reconstructions produce a negative pattern effect due 
to the robust amplification of cooling in the northern extratropics. 
The role of the northern extratropics illustrates that pattern effects 
are not always dominated by the tropical Pacific, distinguishing the 
LGM pattern effect from the well- studied pattern effect of the his-
torical period. In summary, the LGM SST pattern produces a less- 
negative global climate feedback compared to the 2xCO2 SST pattern 
and Δλ < 0.

Separating pattern effects from temperature dependence 
of feedbacks
While our explanation for feedback differences between LGM and 
2xCO2 forcing focuses on SST pattern differences, we also estimate 
how Δλ is affected by global mean temperature within our AGCM 
simulations. Our main AGCM simulations (Fig. 2), which determine 
our estimate of total Δλ, include not only the impact of SST patterns 
on feedbacks (pattern effects) but also differences in feedbacks 
caused by other asymmetries between LGM cooling and modern- 
day warming under 2xCO2 forcing (temperature dependence). We 
consider that

where ΔλPatternOnly is the feedback change due to different patterns of 
SST anomalies and ΔλT is the feedback change due to different global 
mean temperatures (T). Recent community assessments (1, 2) assume 
that warmer climates are more sensitive (ΔλT > 0) (5–9, 41), which is 
at odds with the total Δλ < 0 we find for the LGM in AGCMs and 
coupled models (Fig. 2).

To separate pattern effects from temperature dependence, we per-
form additional “pattern- only” simulations in CAM4, CAM5, and 
CAM6 using the LGMR and 2xCO2 patterns. For these simulations, 
we multiply local SST anomalies by constant scaling factors to yield 
global mean ΔSST = −0.5 K with constant baseline SIC (Materials 
and Methods). SST scaling preserves spatial patterns of anomalies but 
forces global mean ΔT to be small and equal across simulations, i.e., 
ΔλT ≈ 0 in the pattern- only simulations. We then repeat the feedback 

Δλ ≈ ΔλPatternOnly +ΔλT (5)

Fig. 3. Zonal mean patterns of ERF and SST anomalies. All anomalies are nor-
malized through division by global mean anomalies. (A to C) Model simulations in 
CESM1- CAM5 from Zhu and Poulsen (23). (A) ERF directly from three fixed- SST 
simulations using AGCM with LGM greenhouse gas (GHG) and ice- sheet (Ice) forc-
ing, 2xCO2, and LGM ice- sheet forcing alone (including coastline changes) (23). (B) 
Equilibrium SST patterns, corresponding to (A), in the coupled mixed- layer ocean 
model. (C) Quasi- equilibrium SST patterns from fully coupled atmosphere- ocean 
model, comparing LGM forcings (23) with abrupt- 4xCO2 forcing (88); no long- run 
2xCO2 simulation is available. Note vertical- axis scales. (D) Mean and range of SST 
patterns from four data assimilation reconstructions (3, 32–34) of the LGM com-
pared to 2xCO2 multimodel mean from LongRunMIP (39).
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calculations, computing ΔλPatternOnly as in Eq.  3. We estimate the 
temperature dependence ΔλT as the residual difference between the 
main and pattern- only AGCM simulations, rearranging Eq.  5 to 
ΔλT ≈ Δλ − ΔλPatternOnly (Materials and Methods). We note that ice- 
albedo contributions to Δλ could arise from SST patterns or tempera-
ture dependence, but our partitioning of Δλ treats sea ice as part of ΔλT.

The magnitude and sign of ΔλT is found to be model dependent, in 
agreement with recent multimodel assessments (22, 53), but ΔλT ap-
pears to be positive and directionally consistent with standard as-
sumptions (1, 2) for feedback temperature dependence. However, 
ΔλPatternOnly is negative and larger than ΔλT such that total Δλ < 0 in 
each AGCM (fig. S8 and table S3). These results suggest that total Δλ 
for the LGM is mostly attributable to SST pattern effects, and ΔλT 
plays a smaller role over this range of climates. Recent assessments (1, 
2) considered ΔλT for the LGM but did not account for the larger, op-
posing term, ΔλPatternOnly. The substantial LGM pattern effect found 
here motivates revising the LGM evidence for modern- day ECS.

Climate sensitivity accounting for LGM pattern effects
Constraining modern- day ECS with paleoclimate evidence requires 
accounting for how forcings and feedbacks differ in paleoclimates 
relative to the modern- day 2xCO2 scenario (1, 2, 5). LGM inferences 
of ECS begin with applying Eq. 1 to the LGM in equilibrium, estimat-
ing the unadjusted LGM feedback as λ∗

LGM
=

−
∑

ΔF

ΔT
 . ERFs (ΔF) in-

clude not only CO2 but also ice sheets (including sea level) and, 
depending on the timescale chosen for ECS (1–3, 5), additional 
changes that have distinct impacts at the LGM: vegetation, dust, N2O, 
and CH4 (Materials and Methods). λ∗LGM must then be adjusted for 
differences in feedbacks (Δλ) relative to those operating in modern- 
day 2xCO2, following Eq. 4.

Our results suggest that the LGM feedback is more positive than 
the 2xCO2 feedback because of the LGM ice- sheet forcing and result-
ing SST pattern. Failing to account for this difference in feedbacks 
would lead to the inference of higher values of modern- day ECS from 
the LGM, e.g., (54). Some past studies using fully coupled models 
have considered these feedback differences indirectly by applying an 
“efficacy” adjustment (55) to the LGM forcings. The efficacy frame-
work has led to disparate results for multiple reasons: changes in how 
forcing is quantified (40, 41, 56) before ERF became standard (2), the 
lack of data constraints on SST patterns simulated by fully coupled 
models (22, 44, 57), and the behavior of intermediate- complexity 
models with simplified cloud feedbacks (42, 43). Because efficacy is 
equivalent to the ratio of feedbacks λ2x/λLGM (58, 59), our results 
could be framed as a median LGM- forcing efficacy of 1.7 (Materials 
and Methods; tables S1 and S2), consistent with recent studies that 
find LGM- forcing efficacy greater than 1 using ERF and fully coupled 
models (23, 48, 49). However, the pattern effect framework we use 
replaces the need for forcing efficacy (text S1) (59), aligns with 
modern AGCM methods of quantifying feedbacks (60) and ERF 
(61), and incorporates data from the latest reconstructions of 
the LGM.

To demonstrate the impact of LGM pattern effects, we follow meth-
ods in WCRP20 (1) and focus on the 150- year timescale of climate 
sensitivity (S) applicable to modern warming (Materials and Methods) 
(1, 2). We use WCRP20 because that assessment uniquely allows up-
dates of individual parameters and quantitatively combines lines of 
evidence, but our results would have the same directional impact on 
other assessments (2, 3). We use forcing values from WCRP20 to 

estimate the unadjusted LGM feedback, λ∗LGM in Eq. 4. However, given 
emerging evidence (2, 3, 32, 62, 63) after WCRP20, we report results 
using a global temperature anomaly for the LGM of ΔTLGM = −6 ± 1 K 
in addition to WCRP20’s value of −5 ± 1 K. We implement our key 
finding by revising the LGM Δλ to now include LGM pattern effects. 
We assign a normal distribution to Δλ, N(μ  =  −0.37, σ  =  0.23) 
Wm−2 K−1, reflecting spread across AGCMs and SST reconstructions 
(Materials and Methods). Our assessment of Δλ and its uncertainty 
relies on AGCMs to estimate feedbacks from prescribed SST/SIC pat-
terns. We include additional uncertainty tests in figs. S4 and S9, dem-
onstrating that our general conclusions hold if the assumed σ for Δλ is 
doubled.

Accounting for the LGM pattern effect reduces climate sensitivity 
inferred from the LGM evidence (Fig. 4). With ΔTLGM ≈ −6 K, max-
imum likelihood for S from the LGM evidence alone becomes 2.0 K 
(change of −1.3 K). Assuming a prior that is uniform in S from 0 to 
20 K (Materials and Methods) for the LGM evidence alone (table S4), 
we find a posterior median for modern- day ECS of 2.4 K, 66% “like-
ly” range 1.7 to 3.5 K (1.4 to 5.0 K, 5 to 95%). Combining the updated 
LGM evidence with existing likelihoods for the other lines of evi-
dence (process understanding, historical record, and Pliocene) yields 
revised Bayesian probability distributions for the two priors in 
WCRP20: uniform in λ (WCRP20’s “Baseline”) and uniform in S (a 
robustness test).

The impact of the LGM pattern effect on the combined evidence is 
most pronounced on the upper bound of S, which has been notori-
ously difficult to constrain (64). Assuming that ΔTLGM ≈ −6 ± 1 K, 
the median and 66% range from combining lines of evidence for S 
becomes 2.9 K (2.4 to 3.5 K) with a uniform- λ prior or 3.1 K (2.6 to 3.9 K) 
with a uniform-  S prior. Corresponding 5 to 95% ranges are 2.1 to 
4.1 K with uniform- λ and 2.3 to 4.7 K with uniform-  S. Accounting for 
pattern effects in Δλ for the LGM thus reduces the central estimate of 
modern- day ECS by approximately 0.5 K and reduces the 66% range’s 
upper bound by 0.6 and 0.9 K for the uniform- λ and uniform-  S pri-
ors, respectively, indicating substantially stronger constraints than 
WCRP20 (1) even after allowing for more glacial cooling. While the 
qualitative assessment in IPCC AR6 (2) cannot be quantitatively up-
dated, these results suggest stronger constraints on modern- day ECS 
than assessed there, as well.

Accounting for LGM pattern effects—enabled by recent advances 
in LGM SST reconstruction using paleoclimate data assimilation and 
in quantifying pattern effects using atmospheric models—provides a 
tighter upper bound on modern- day ECS. While each line of evidence 
will surely evolve as scientific understanding improves, the results 
presented here demonstrate that pattern effects must be accounted for 
when inferring modern- day climate sensitivity from paleoclimate pe-
riods that are substantially affected by non- CO2 forcing.

MATERIALS AND METHODS
Data assimilation reconstructions of the LGM
We use four LGM reconstructions to quantify the LGM pattern effect, 
sampling uncertainty across data assimilation methods and model 
priors (35, 36). Osman et al. (32) produced the time- dependent 
“LGMR” spanning the past 24,000 years; the SST and SIC fields that 
represent the LGM in their reanalysis are time means spanning 19,000 
to 23,000 years ago. Tierney et al. (3) produced the state estimate 
“lgmDA” dataset. Both the LGMR and lgmDA use priors from 
isotope- enabled simulations in iCESM1.2 and iCESM1.3 with 
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assimilation of seasonal and annual SST proxies in an ensemble Kal-
man filter; there are differences in the proxy databases and methods 
between the two reconstructions. Annan et al. (33) also used an en-
semble Kalman filter but with a multimodel prior, including 19 en-
semble members from a wide array of climate models spanning 
PMIP2 (launched in 2002) to PMIP4 (launched in 2017); they as-
similated annual SST proxies and land- temperature proxies; they also 
applied an adjustment to the prior ensemble to pre- center the prior 
around available proxy data. Amrhein et al. (34) fit the MITgcm ocean 
model to seasonal and annual SST proxies (65) using least squares 
with Lagrange multipliers by adjusting prior atmospheric fields from 
a CCSM4 LGM simulation (66). While these approaches use a diver-
sity of DA methods, versions of CESM1- CAM5 form the prior for two 
of the reconstructions (3, 32), and the prior covariances could be bi-
ased by model errors. Moreover, archived proxy data are geographi-
cally inhomogeneous with strong preferences for the NH and tropics; 
additional data could lead to greater SST agreement across recon-
structions outside of the NH.

Simulations with AGCMs
SST/SIC boundary conditions for the LGM, Late Holocene baseline, 
and 2xCO2 are prepared to maintain constant forcing, i.e., ΔF = 0 in 
Eq. 1, across simulations. Topography is held constant, i.e., the LGM 
ice sheets are not present in AGCM simulations because their impact 
is already included as a forcing, and we are isolating feedbacks from 
changing SST/SIC. For the LGM and Late Holocene datasets, we ad-
just for differences relative to modern coastlines using kriging and 
extrapolation in polar regions. Details of sea- level adjustments are 
provided in text S3.

The 2xCO2 SST/SIC is the multimodel mean of 200 years from the 
end of six 2xCO2 simulations, initialized from preindustrial control 
states, in LongRunMIP (39): CESM1.0.4 (years 2300 to 2500), 
CNRM- CM6- 1 (years 550 to 750), HadCM3L (years 500 to 700), 

MPI-ESM- 1.2 (years 800 to 1000), GFDL- ESM2M (years 4300 to 4500), 
and MIROC3.2 (years 1803 to 2003). These simulations are near equi-
librium but only represent an estimate of the true equilibrium SST 
response to 2xCO2.

The Late Holocene, defined as the climatological mean of 0 to 
4000 years ago in the LGMR (32), is used as the baseline SST/SIC for 
all feedback calculations. This baseline represents a long- term mean 
of the preindustrial climate, constrained by assimilation of proxy data. 
After adjusting for modern sea level, the four LGM boundary condi-
tions and the 2xCO2 boundary condition for SST are prepared by 
adding the SST anomalies from each of the four reconstructions to the 
Late Holocene baseline SST. Because of nonlinear behavior of sea ice, 
the LGM and 2xCO2 boundary conditions for SIC are not added to 
the baseline as anomalies but rather are used directly (fig. S2).

We run simulations with the Late Holocene baseline, 2xCO2, and 
LGMR in each of five AGCMs. We run simulations with all four of the 
LGM reconstructions (LGMR, lgmDA, Amrhein, and Annan) in 
CAM4 and CAM5, sampling the spread in LGM feedbacks from dif-
ferent reconstructions in two AGCMs that have distinct relationships 
linking SST patterns to radiative feedbacks based on their respective 
Green’s functions (12, 18). Spin- up/analysis period/climatological 
forcing for each AGCM is as follows: 5 years/25  years/2000 for 
CESM1.2.2.1- CAM4 (67), CESM1.2.2.1- CAM5 (68), and CESM2.1- 
CAM6 (69) at 1.9° × 2.5° latitude- by- longitude resolution; 5 years/ 
25 years/2014 for HadGEM3- GC3.1- LL (70) at N96, ~135- km resolu-
tion; and 1 year/30 years/2001 for GFDL- AM4 (71) at C96, ~100- km 
resolution. Parent coupled models of the AGCMs considered here 
sample a wide range of climate sensitivities, from 2.95 to 5.54 K, and 
the AGCMs span a wide range of pattern effects in the historical re-
cord, from 0.38 to 0.84 Wm−2 K−1 (17).

To compute λ, we take global means over the analysis periods 
for net top- of- atmosphere radiative imbalance (N) and near- 
surface air temperature (T). Differences are taken relative to the 

Fig. 4. Inference of modern- day climate sensitivity including the LGM pattern effect. Results from WCRP20 (1) with no LGM pattern effects and original assumption 
of ΔTLGM ~ N(μ = −5, σ = 1) K (gray) and with revised ΔTLGM ~ N(−6, 1) K (black) based on IPCC AR6 (2). Revised climate sensitivity including LGM pattern effects from this 
study (light and dark blue) assuming Δλ ~ N(μ = −0.37, σ = 0.23) Wm−2 K−1. Climate sensitivity shown is effective sensitivity (S) representing 150- year response, as in 
WCRP20 (1). (A) Likelihood functions for S based on only the LGM line of evidence. (B) Posterior probability density function (PDF) after combining LGM with other lines 
of evidence, assuming a uniform- λ prior (top) or a uniform-  S prior (bottom). Outlier lines indicate 5th to 95th percentiles, dots indicate 66% "likely" range, and box indi-
cates 25th to 75th percentiles and median.
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Late Holocene baseline, yielding effective feedbacks (72) as λ = ΔN/
ΔT for LGM and 2xCO2 simulations, given that ΔF = 0 in Eq. 1 
by design.

To evaluate the impact of uncertainty in the 2xCO2 pattern, we 
also consider existing simulations of abrupt- 4xCO2 with 150- year re-
gressions (73) of ΔN versus ΔT, denoted as λ4x(150yr), to estimate λ2x 
(results in figs. S3 and S4 and tables S1 and S2). Results are consistent 
using either method of estimating λ2x. To compute Δλ using λ4x(150yr), 
we apply a timescale adjustment (ζ) to reconcile feedbacks from equi-
librium paleoclimate data with the feedback that applies to 150- year 
effective sensitivity (S), as in WCRP20. We use the central estimate 
from WCRP20 of ζ = 0.06, and Eq. 3 is modified to Δλ = λ4x(150yr)/
(1 + ζ) − λLGM.

To investigate how spread across the ensemble members from the 
two most recent LGM reconstructions affects our results, we run ad-
ditional simulations using CAM4 and CAM5 with the quartiles of 
ensemble members that produce the most negative and most positive 
λLGM in the LGMR (32) and Annan (33) reconstructions (error bars 
in Fig. 2). To determine the SST/SIC boundary conditions for these 
experiments, ensemble members in each dataset are initially ranked 
by estimating λLGM with CAM5 Green’s functions (18) applied to SST 
anomalies from each ensemble member. CAM4 Green’s functions 
(12) produce similar rankings. Green’s functions are only used for 
ranking and discarded thereafter. We group the ensemble members 
into quartiles based on rank, and the mean SST/SIC (only SST for the 
Annan reconstruction) is computed across ensemble members in 
each quartile. Mean SST anomalies representing the first and fourth 
quartiles, the most and least negative feedbacks, are used in the addi-
tional AGCM simulations. Note that CAM5 with the Annan ensem-
ble’s extreme negative λLGM produces Δλ > 0. In this quartile, most 
ensemble members have warming at the LGM over substantial por-
tions of the Southern Ocean (fig. S10). This suggests that Δλ could be 
positive if the Southern Ocean experienced warming at the LGM, 
which appears unlikely based on SST proxies (3, 32, 65), reconstructed 
deep- ocean temperatures (74), and proxy data indicating increased 
Antarctic sea ice at the LGM (75).

Pattern- only simulations separating pattern and 
temperature dependence
Feedback differences can be attributed to differences in SST patterns 
and in global mean near- surface air temperature (1) such that Δλ ≈ 
ΔλPatternOnly + ΔλT. To separate pattern and temperature impacts 
on Δλ, we conduct additional pattern- only simulations in CAM4, 
CAM5, and CAM6 with the LGMR and 2xCO2 patterns. For these 
simulations, we multiply local SST anomalies by constant scale fac-
tors, k, which are determined for each pattern so that the global mean 
ΔSST is reduced to −0.5 K for both simulations. The constant scale 
factor for a given pattern of anomalies is calculated from the global 
mean ΔSST as k = − 0.5 K

ΔSSTglobal
 , and scaled patterns are then created as 

ΔSSTscaled = kΔSST at each grid cell. We hold SIC constant at the Late 
Holocene baseline.

SST scaling preserves the spatial pattern of anomalies but forces 
global mean ΔT to be small enough that feedback changes due to 
temperature dependence are negligible (ΔλT  ≈  0). We repeat the 
feedback calculations, computing ΔλPatternOnly ≈ λ−0.5K2x − λ−0.5KLGM  as in 
Eq. 3. While there is no existing method that directly isolates tem-
perature dependence in AGCM simulations, the temperature depen-
dence can be approximated as the residual difference between our 

main and pattern- only simulations, rearranging Eq. 5 to ΔλT ≈ Δλ 
− ΔλPatternOnly. In this framework, feedback changes due to sea ice are 
included in temperature dependence.

We use this pattern- scaling method because it aligns with intuition 
for pattern effects captured by Green’s functions (12, 18). We do not 
use Green’s functions to calculate the pattern- only feedbacks, but we 
briefly discuss the Green’s functions framework here to explain the 
pattern- only AGCM simulations. In the linear framework of Green’s 
functions

where j represents each grid cell, ΔSSTj represents the full SST anoma-
ly at grid cell j, ∂N/∂SSTj represents the global mean top- of- atmosphere 
radiative response to a unit increase in local SST at grid cell j, ∂T/∂SSTj 
similarly represents the response of global mean near- surface air tem-
perature, and ϵ represents changes that are independent of SST. Because 
the feedback λ = ΔN/ΔT, constant scale factors, applied as kΔSST, ap-
pear in the feedback calculation as λ = (kΔN)/(kΔT) if ϵN = ϵT = 0 and 
SST patterns determine λ. In this case, where SST patterns are the sole 
control on λ, scale factors cancel and have no effect on feedbacks or 
pattern effects. By comparing feedbacks from scaled pattern- 
only simulations with feedbacks from simulations with full SST 
anomalies, we quantify feedback changes that cannot be explained 
by SST patterns, which we attribute to feedback dependence on 
global mean temperature. For example, temperature dependence 
could arise from ∂N/∂SSTj  changing with global mean temperature 
or from sea ice appearing at lower latitudes as temperature decreases.

Feedback decomposition using model fields and 
radiative kernels
Net λ is calculated from changes in top- of- atmosphere radiation (ΔN) 
divided by changes in global mean temperature (ΔT). ΔN can be sep-
arated into shortwave clear- sky (SWcs), longwave clear- sky (LWcs), 
and cloud radiative effect (CRE)

Each component of the radiation is available from AGCM output, 
and dividing all terms by ΔT yields feedbacks for each component, 
which sum to the net feedback. The total clear- sky feedback is the sum 
of shortwave and longwave components. Because CRE is calculated as 
all- sky radiation (N) minus clear- sky radiation, CRE is affected by 
changes in noncloud variables.

With radiative kernels (51, 76), feedbacks can be decomposed into 
contributions from temperature, moisture, and surface albedo. Cloud 
feedbacks can be estimated by controlling for changes in noncloud 
variables, and feedbacks from changing surface albedo can be adjust-
ed to account for overlying cloud cover, which we do here following 
past studies (51). Radiative kernels are linearized around a specific 
climate in a specific model, however, and are prone to errors when 
applied to different climates and models. We use CAM5 kernels (77), 
convolving them with the monthly mean climatology of anomalies 
in each AGCM simulation to produce feedbacks in figs. S6 and 
S7 and zonal means in figs.  S12 to S22 (described in text S5). 

ΔN =
∑

j

∂N
∂SSTj

ΔSSTj + ϵN

ΔT =
∑

j

∂T
∂SSTj

ΔSSTj + ϵT

ΔN = ΔNSWcs +ΔNLWcs +ΔNCRE
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HadGEM3- GC3.1- LL is not included in kernel analysis due to model 
output limitations. GFDL- AM4’s 2xCO2 simulation has error in the 
kernel- derived clear- sky feedback equal to 15.6% of the actual feed-
back, exceeding the 15% threshold commonly used as a test of clear- 
sky linearity (15, 76); all other simulations have clear- sky feedback 
errors less than 10%. Residuals shown in fig. S6 are based on total 
(all- sky) radiation: λResidual = λNet − Σλj, where λNet is the net feedback 
from model output and Σλj is the sum of each of the following kernel- 
derived feedbacks: Planck, lapse rate, water vapor, surface albedo, 
shortwave cloud, and longwave cloud.

Bayesian estimate of modern- day climate sensitivity
We follow methods (1) and code (78) provided by WCRP20 for calcu-
lating climate sensitivity, but we provide a summary of relevant meth-
ods here. ECS is the steady- state change in global mean temperature 
(T) from a doubling of CO2, traditionally with ice sheets and vegeta-
tion assumed fixed. When inferring climate sensitivity that is relevant 
to modern warming from paleoclimate evidence, changes in the pa-
leoclimate radiative budget that are distinct from feedback processes 
in modern- day 2xCO2 are treated as forcings; this is typically accom-
plished by separating “slow” timescale changes as forcings (e.g., ice 
sheets) from “fast” timescale changes as feedbacks (5). WCRP20 ap-
plies this framework by focusing on effective climate sensitivity (S), 
i.e., the 150- year system response.

Relative to WCRP20, our key update only affects ∆λ for the 
LGM. However, given evidence (2, 3, 32, 62, 63) published after 
WCRP20 showing LGM cooling centered on −6°C instead of −5°C, 
we report our main results using both assumptions for ΔTLGM (Fig. 4 
and fig. S4).

To estimate S, we use a modified version of WCRP20’s energy 
balance for the LGM

which determines λ2x and S  =  −ΔF2x/λ2x. We substitute our Δλ, 
which includes pattern and temperature dependence. Other than 
testing a colder ΔTLGM, the parameters are unchanged from WCRP20 
with the following normal distributions: modern- day forcing from 
2xCO2 ΔF2x ~ N(μ = 4.0, σ = 0.3) Wm−2; total non- CO2 LGM forc-
ing of ΔF′ ~ N(−6.15, 2) Wm−2 (consisting of −3.2 Wm−2 from ice 
sheets, −1.1 from vegetation, −1.0 from dust aerosols, −0.28 from 
N2O, and −0.57 from CH4); the timescale transfer parameter from 
ECS to the 150- year feedback of ζ ~ N(0.06, 0.2); and LGM tempera-
ture change ΔTLGM  ~ N(−5, 1) °C, or revised ΔTLGM  ~ N(−6, 1) 
°C. In WCRP20, Δλ  =  ΔλT  =  −αΔTLGM/2, with α  ~ N(μ  =  0.1, 
σ = 0.1) Wm−2 K−2.

Quantification of non- CO2 ERF from ice sheets (including sea 
level), dust and other aerosols, vegetation, and other greenhouse gases 
represents substantial uncertainty. As noted in (23), estimates of the 
ERF for each component of LGM forcing still need to be constrained, 
and the uncertainty in radiative effects especially due to dust/aerosols 
(79, 80) and vegetation changes may be underestimated in WCRP20. 
Future paleoclimate research on dust and other aerosols (81–83) and 
vegetation (84, 85) could improve the estimates used here and in pa-
leoclimate modeling (86, 87). Recent assessments (1–3) discuss how 
dust and other aerosols, vegetation, and non- CO2 greenhouse gases 
also act as feedbacks on fast timescales, and some studies (3, 54) have 

calculated a version of climate sensitivity that assumes equivalency in 
these feedbacks (and in feedbacks from SST patterns) between the 
LGM and modern- day CO2, leading to higher values of ECS (3). In 
the IPCC AR6 (2) framework for modern- day ECS, these biogeo-
physical and non- CO2 biogeochemical changes are presented as feed-
backs (central value of −0.01 Wm−2  K−1). However, AR6 does not 
address how to account for the LGM’s distinct dust/aerosol and vege-
tation changes when estimating modern- day ECS from LGM evi-
dence, and this accounting should be a topic of future research.

From the AGCM results in this study, we incorporate pattern ef-
fects in Δλ of Eq. 6, assigning a revised ∆λ ~ N(−0.37, 0.23) Wm−2 K−1. 
The revised distribution for ∆λ in our study is based on propagating 
uncertainty, estimated as spread across AGCMs and LGM recon-
structions. To combine uncertainty, we assume that within CAM6, 
GFDL- AM4, and HadGEM3, the spread in Δλ from different LGM 
reconstructions would be the same as in CAM4 and CAM5. We add 
the differences in Δλ from each pattern in CAM4 and CAM5, where 
differences are computed relative to Δλ using the LGMR pattern, to 
the results from the remaining three AGCMs. The effect is to treat er-
rors as arising independently in reconstructions and AGCMs. We in-
clude Δλ from extreme quartile simulations using ensemble members 
from Annan and LGMR as part of the combined sample. There are 
eight simulations from CAM4 and eight from CAM5 that determine 
spread from LGM patterns. Note that the spread from LGM patterns 
is similar between CAM4 and CAM5 (Fig. 2).

With the combined sample, we perform bootstrap resampling (de-
scribed in text S4) with 105 iterations and a sample size of 19 (equal to 
the number of actual AGCM simulations). The mean over all iterations 
is Δλ = −0.37 (95% range: −0.47 to −0.26) Wm−2 K−1, and mean sam-
ple standard deviation (SD) = 0.23 (95% range: 0.15 to 0.31) Wm−2 K−1, 
which informs our assigned μ and σ, respectively. In fig. S4, we include an 
uncertainty test by doubling σ to 0.46 Wm−2 K−1. Using the same boot-
strap method, we calculate forcing efficacy (55) for the LGM, which is 
equivalent to the ratio of feedbacks λ2x/λLGM, to have a median value of 
1.7 (95% range: 1.5 to 2.0), mean value of 2.1 (95% range: 1.6 to 2.6), 
and sample SD of 1.1 (95% range: 0.6 to 1.4). Efficacy is strongly af-
fected by division of small values of λLGM; hence, CAM6 becomes an 
outlier in the efficacy calculation. We report the median in the main 
text to reduce the outlier impact.

Calculations for LGM likelihoods and Bayesian probability density 
functions (PDFs) for S follow the Monte Carlo methods in WCRP20 
(1, 78). Likelihoods are independent of the prior, but combining the 
likelihoods with a prior is required to create posterior PDFs that com-
bine lines of evidence. We show results for both priors in WCRP20: the 
Uniform(−10, 10) Wm−2 K−1 prior on λ (their Baseline) and the Uni-
form(0, 20) °C prior on S (robustness test, using a prior that is more 
conservative regarding the possibility of high climate sensitivity).

Supplementary Materials
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Tables S1 to S4
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Supplementary Text 
Text S1. Forcing Efficacy and Pattern Effects. 

In this section, we briefly consider the relationship between “efficacy” and pattern effects, 
which has been investigated in a recent study (59). The efficacy framework (55) translates one 
unit of forcing by a non-CO2 agent, e.g., ice sheets, into the equivalent amount of CO2 forcing 
which would cause the same global-mean ΔT. While past research on forcing efficacy has 
considered that different forcings have different temperature impacts (55), analyses using the 
efficacy framework for the LGM have produced disparate results (22, 23, 42, 43, 48, 56), 
possibly due to simplified physics of intermediate-complexity models (42, 43). Because of these 
results, WCRP20 inflates uncertainty on LGM forcings. 

Efficacy, e, can be equivalently framed as a ratio of radiative feedbacks (58, 59), e.g., 
eIceSheet=λ2x/λIceSheet. The negative LGM pattern effect (Δλ=λ2x−λLGM, Δλ<0), which we find in 
AGCM simulations using data-assimilation reconstructions for the LGM, is consistent with an 
LGM efficacy greater than 1. The efficacy of ice sheets is greater than 1 in the following model-
only studies with mixed-layer oceans coupled to atmospheric general circulation models: 
CESM1-CAM5 (23), CESM2 (48), and CESM2-PaleoCalibr (49) (SI Appendix, Text S2). Some 
intermediate-complexity models (42, 43), however, have reported ice-sheet efficacy less than 1. 

The pattern effect, combined with temperature dependence, can equivalently explain forcing 
efficacy (59). We use the pattern-effect framework rather than efficacy because it allows for 
quantification of feedback changes in AGCMs using observational constraints on SST patterns 
from data assimilation and has strong theoretical underpinnings (12, 18, 59). The pattern-effect 
framework is oriented around the climate feedback, λ, which is the key uncertain parameter for 
climate sensitivity. We follow methods in WCRP20 (1) to account for Δλ for the LGM in 
estimates of modern-day climate sensitivity. We refer readers to Zhou et al. (2023) (59) for 
further explanation of the connection between efficacy and pattern-effect frameworks. 

Text S2. LGM Pattern Effects in Coupled Models. 
Simulations with mixed-layer ocean models coupled to AGCMs (known as slab ocean 

models (47), “SOM” hereafter) in CESM1-CAM5 (23), CESM2.1-CAM6 (48), and CESM2-
PaleoCalibr (49) illustrate pattern effects in coupled models. Note that feedbacks from ocean 
dynamics are excluded in the SOM, and models’ SST/SIC patterns are not constrained by proxy 
data, hence we use the SOM only to support interpretation of the LGM pattern effect. Feedbacks 
in SOM simulations are calculated as λ=ΔERF/ΔT, where the effective radiative forcing (ERF) is 
determined from introducing forcings in separate simulations in the corresponding AGCMs 
(keeping SST/SIC fixed at pre-industrial values), and ΔT is the equilibrium change in global-
mean near-surface air temperature in the SOM (also known as reference-height temperature, or 
“TREFHT” in CESM name conventions). The ERF is affected by changes in land-surface 
temperatures, which are not held constant in AGCM simulations due to practical limitations, and 
an adjustment (23, 55) to the ERF can be made to account for land changes—see Zhu & Poulsen 
(2021) (23) for methods. 

This adjustment, which is based on a climate sensitivity parameter (23) can also be applied 
to estimate an “adjusted ERF” for LGM ice sheets, although it is difficult to assess the validity of 
the adjustment for ice-sheet forcing, which affects not only land temperatures but also 
topography. Radiative kernels based on modern climate would typically be used to validate the 



ERF adjustment (23), but they cannot be applied with LGM topography. SI Appendix, Figure 
S11, shows feedbacks from coupled models using both ERF and adjusted ERF. Note that these 
values do not affect our quantification of Δλ for ECS calculations, which comes from AGCM 
simulations. 

Text S3. Preparation of SST/SIC Boundary Conditions. 
SST and SIC boundary conditions (BCs) for the LGM, Late Holocene baseline, and 2xCO2 

are prepared to enable consistent calculation of the net feedback (λ) that is applicable to a 
modern-day doubling of CO2. When changing the surface BCs in AGCM simulations to compute 
λ, ΔF=0 in Eq. 1 only if there are no changes in land-sea distribution or ice-sheets. For the LGM 
and Late Holocene datasets, we adjust for differences in land-sea distribution, determined from 
refs. (89, 90), compared to present day using kriging and extrapolation near coastlines in polar 
regions. While sea-level changes must be neutralized to preserve ΔF=0 in the AGCM 
simulations, infilling SST over the Sunda Shelf represents a notable uncertainty (28, 91). The 
alternative option, holding all forcings constant at LGM rather than modern values, would 
require changing modern topography to include LGM ice sheets and inherit sea level of the 
LGM. Those changes could introduce more uncertainty in estimates of λ that are relevant to 
future warming. Here we only consider the framework with constant modern-day forcings. 

For SST, kriging is performed across overlapping subset regions of radius≈3000 km spaced 
around the globe. Results for overlapping subset regions are merged using inverse-distance 
weighting from the center of each subset region. Kriging results are retained only where no pre-
existing SST value exists in a dataset. Over polar regions and inland waters, inverse-distance 
extrapolation populates the SST field. 

For SIC, all values are first required to be no less than the ice-sheet fraction at that location, 
i.e., modern seas that were covered by ice sheets at the LGM, such as the Hudson Bay, are
assigned a minimum SIC that equals the LGM ice fraction at 21,000 years ago (89, 90). For
modern seas which were land but not ice sheet at the LGM, SIC is populated based on the SST.
This step uses the SIC formula from the CAM boundary condition protocol (92), where
SIC=100% if SST<–1.8°C, SIC=0% if SST>4.97°C, and otherwise the infilled SIC=0.729–
((SST+1.8)/9.328)1/3. Gaussian smoothing is applied to the result, reducing any sharp boundaries
caused by the infilling. The SIC formula above is also applied to maintain internally consistent
values of SST and SIC (92) in the Late Holocene baseline. See SI Appendix, Text S4, for
uncertainty tests regarding sea ice.

The Annan dataset includes only annual SST and no reconstruction of SIC. Because SIC is 
required in all AGCMs, we assign the SIC from Amrhein to the Annan data. In a CAM4 test 
using the LGMR SIC with Annan SSTs (instead of the Amrhein SIC), Δλ is marginally more 
negative (λLGM changes by < 0.1 Wm−2K−1). This result suggests that uncertainty from assigning 
a SIC reconstruction to Annan SSTs is small compared to uncertainty in the SST reconstruction. 
We assign the Amrhein SIC for the Annan SST in our main results because this choice is more 
conservative in that it reduces the magnitude of the mean LGM pattern effect. For consistency, 
the Annan SST is assigned the annual cycle from the Amrhein data for SST/SIC. 

For the 2xCO2 BC, we use output from LongRunMIP (39) simulations of abrupt and 
transient-1% yr−1 doubling of CO2. We use the mean of 200 years of output from the following 
six models in to create a multi-model mean SST/SIC BC: CESM1.0.4 (93) years 2300–2500, 
CNRM-CM6-1 (94) years 550–750, HadCM3L (95) years 500–700, MPI-ESM-1.2 (96) years 
800–1000, GFDL-ESM2M (97) years 4300–4500, and MIROC3.2 (98, 99) years 1803–2003. 



HadCM3L results use years 500-700 due to an output error in the pre-industrial control run after 
year 700. All LongRunMIP results are regridded to a standard 1.9º x 2.5º lat-lon grid. For SIC, 
monthly output is available, and we compute a 200-yr climatology for each model and then a 
multi-model-mean climatology. For SST, annual output is available for each model and monthly 
output from MIROC3.2. We compute the 200-yr mean SST anomaly for each model and then 
apply the annual cycle from MIROC3.2 to the multi-model mean. We also show results in SI 
Appendix, Fig. S3–S4, which do not use the LongRunMIP-2xCO2 BC and instead use 150-year 
regressions (73) of abrupt-4xCO2 from parent coupled models corresponding to each AGCM 
used in this study, thereby sampling uncertainty in warming patterns because the 150-year 
regressions are produced from different models’ warming patterns. 

BCs are regridded to the 1.9° x 2.5° (latitude x longitude) grid used for CAM4, CAM5, and 
CAM6. HadGEM3-GC31-LL regrids to N96 (resolution of approximately 135 km) (70), and 
GFDL-AM4 regrids to a C96 cubed sphere (resolution of approximately 100 km) (71). 

For the “pattern-only” simulations with SST anomalies normalized to −0.5 K, we make the 
following changes to the LGM and 2xCO2 BCs. For the LGM, we use the LGMR SST. For 
2xCO2, we use the LongRunMIP SST. We compute the global-mean ΔSST for both datasets as 
ΔSST0000000, and we multiply all local SST anomalies by the scale factor −0.5/ΔSST0000000. This scaling 
causes the resulting global-mean ΔSST to become −0.5 K, but the spatial pattern of the SST 
anomalies is unchanged. We use −0.5 K for both the LGM and 2xCO2 so that there is no 
cooling-warming asymmetry, and ΔT is small enough that temperature dependence of λ is 
negligible (i.e., ΔλT≈0, and Δλ≈ΔλPatternOnly). ΔT is still large enough that we can compute 
λ=ΔN/ΔT without requiring an excessively long simulation to overcome noise in the 
denominator. We use the baseline SIC (Late Holocene) in all of the pattern-only simulations so 
there are no changes in sea ice, so this set of simulations also serves to check whether Δλ is 
attributable to SIC rather than SST changes. 

To examine whether the pattern-only results are sensitive to the scaling method of 
separating pattern effects, we tested an alternative subtraction method in CAM4 (using the 
LGMR pattern for the LGM and the LongRunMIP pattern for 2xCO2). We ran alternative 
pattern-only simulations with global-mean SST anomalies set to zero by subtracting the global 
mean at all locations. These experiments produced consistent results for ΔλPatternOnly compared to 
scaling. 

An additional simulation was run in HadGEM3-GC3.1-LL with SIC held constant at the 
Late Holocene baseline while the SST field is varied with the full value of anomalies, using the 
LongRunMIP-2xCO2 and LGMR patterns of SST. Results from this simulation are shared in SI 
Appendix, Text S4. 

This concludes the preparation steps for the main simulations (BCs from four data-
assimilation reconstructions for the LGM, one Late Holocene, and one 2xCO2) and the “pattern-
only” simulations (two additional BCs: LGMR and LongRunMIP-2xCO2 scaled to −0.5 K). The 
final adjustment to each BC follows the standard boundary-condition protocol for CAM, known 
as “bcgen.” This process ensures that SIC and SST are plausibly bounded (e.g., SIC between 0 
and 1), and it transfers the monthly climatology to mid-month values which can be linearly 
interpolated in an AGCM. 

Text S4. Uncertainty of Δλ. 
To include the LGM pattern effect in the Bayesian framework of WCRP20, we must assign 

a statistical distribution to Δλ for the LGM (following WCRP20’s method for Δλ in the historical 



record). In this section we provide additional detail on combining uncertainty from AGCM 
physics and LGM reconstructions with bootstrapping. 

To evaluate the sensitivity of our uncertainty quantification to the size of our sample of 
AGCMs and reconstructions, we calculate a bootstrap confidence interval (CI) on our estimate, 
σ6, of the standard deviation of Δλ as follows. First, we construct a sample where each AGCM is 
equally weighted and the spread from various LGM reconstructions is included in the sample (as 
described below). We then use bootstrapping of this sample to provide confidence bounds on our 
estimate (σ6) of the population standard deviation from the sample standard deviation. 

To create the equally weighted sample, we assume that the spread around the LGMR 
feedback (of the feedbacks from Amrhein, Annan, and lgmDA) would be the same in GFDL-
AM4, HadGEM3-GC3.1-LL, and CAM6 as they are in CAM4 or CAM5. We include the 
simulations using the extreme quartiles from Annan and LGMR in the sample. This assumption 
yields a sample of 40 values of Δλ based on (4 LGM patterns + 2 extreme-quartile LGMR 
patterns + 2 extreme-quartile Annan patterns) x (5 AGCMs). We proceed with bootstrapping by 
sampling with replacement from the 40 values of Δλ. We generate 105 samples of size n=19, 
choosing this sample size for the bootstrap because there are 19 direct estimates of Δλ from 
simulations in the AGCMs. This process yields 105 bootstrapped values of σ6 from which we 
derive the 95% CI: (0.15, 0.31) Wm−2K−1. Note that the upper bound of 0.31 Wm−2K−1 is much 
less than two times the population standard deviation of 0.23 Wm−2K−1 that we assign to Δλ, 
indicating that doubling the assumed standard deviation for Δλ is a more conservative 
uncertainty test (SI Appendix, Fig. S4) than using the bootstrapped 95% bound. 

To determine the distribution of Δλ in SI Appendix, Figure S4, we repeat the bootstrap 
estimate using λ4x(150yr)/1.06 instead of λ2x, where 1.06 represents WCRP20’s central estimate (1) 
for the timescale adjustment between the 150-year feedback and the equilibrium feedback; this 
yields Δ!=−0.27 Wm−2K−1 and mean sample standard deviation of 0.20 Wm−2K−1. 

Our method of combining uncertainty gives equal weight to the most-extreme quartiles and 
to the central estimates, but this overestimate of uncertainty is warranted given that paleoclimate 
data assimilation may underestimate the true uncertainty (35). The uncertainty estimate also 
gives more weight to the most recent reconstructions, LGMR (32) and Annan (33), by including 
three simulations (mean, 1st quartile, and 4th quartile) from these datasets. The weighting 
influences the bootstrap estimate and the distribution assigned to Δλ in our calculations of ECS. 

Over the range of temperatures between the LGM and 2xCO2, all five AGCMs appear to 
have weaker temperature dependence of feedbacks than WCRP20 assumes, i.e., ΔλT appears 
smaller than in WCRP20. ΔλT could be underestimated in all models, so we include an 
uncertainty test where we use the pattern-only simulations in CAM4, CAM5, and CAM6 to 
estimate the mean ΔλPatternOnly contribution to the total ∆λ, and we retain WCRP20’s estimate of 
ΔλT. In this uncertainty test, Δλ in Eq. 6 is calculated as the sum of ΔλT and ΔλPatternOnly: 
ΔλT=−αΔT/2 with α~N(0.1, 0.1) Wm−2K−2 as in WCRP20, while ΔλPatternOnly~N(−0.51, 0.23) 
Wm−2K−1 with μ based on CAM4, CAM5, and CAM6 results (SI Appendix, Table S3). The 
results of this uncertainty test are included in SI Appendix, Figure S9, indicating that accounting 
for pattern effects causes the dominant change to LGM evidence for ECS, while the revision to 
WCRP20’s temperature dependence contributes a smaller portion of the update. 

Sea-ice reconstructions, which are not well constrained, contribute to uncertainty in the 
LGM pattern effect. However, the uncertainty due to sea ice appears small compared to the 
uncertainty across AGCM physics and in the SST pattern. In an additional set of simulations 
with HadGEM3-GC3.1-LL, the SST anomalies are applied in full at the LGMR, Late Holocene, 



and LongRunMIP-2xCO2 values while the SIC is held constant at the Late Holocene values. 
These simulations make λ2x and λLGM more negative by eliminating the positive ice-albedo 
feedback, but the difference in the feedbacks, Δλ, is largely unaffected. Constant SIC produces 
Δλ = −0.28 Wm−2K−1, compared to −0.27 Wm−2K−1 in the main simulations for HadGEM3-
GC3.1-LL. SIC is also held constant in the pattern-only simulations, which produce Δλ<0. While 
our results appear robust despite uncertainty in SIC, substantially different LGM reconstructions 
or SIC responses to modern-day 2xCO2 could change the resulting Δλ. Future work should 
continue investigating the role of sea ice in paleoclimate pattern effects.  

Text S5. Zonal-mean Feedbacks. 
SI Appendix, Figures S12–S22 show zonal means (indicated by brackets as [λ]) of the 

global-mean feedbacks that appear in SI Appendix, Figure S6. The net feedback, clear-sky 
shortwave (SW), clear-sky longwave (LW), and cloud radiative effect are calculated directly 
from model output. The remaining feedbacks are from radiative kernel decomposition (Materials 
and Methods) using CAM5 kernels (77, 100). GFDL-AM4’s 2xCO2 simulation has error in the 
kernel-derived clear-sky feedback equal to 15.6% of the actual feedback, exceeding the 15% 
threshold commonly used as a test of clear-sky linearity (15, 76, 101); all other simulations have 
clear-sky feedback errors less than 10%. Total cloud feedback is also shown as the sum of 
kernel-derived SW and LW components. 

Each of the zonal-mean figures consists of: (A) In CAM5, mean and range of feedbacks 
across four LGM reconstructions and 2xCO2 from LongRunMIP. (B) In CAM5, mean and range 
of the difference in feedbacks (Δλ = λ2x − λLGM) across four LGM reconstructions from results in 
panel A. (C) Feedbacks across various AGCMs, using the LGMR reconstruction of the LGM and 
2xCO2 from LongRunMIP. (D) Mean and range of Δλ across various AGCMs from results in 
panel C. Note that HadGEM3 is not included in the kernel-derived feedbacks due to limited 
availability of model output.  



Fig. S1. Differences in LGM sea-surface temperature (SST) patterns compared to 2xCO2
reference pattern.  
All local anomalies are normalized through division by global-mean anomaly, then differences 
between the 2xCO2 pattern and LGM pattern are taken. Red regions indicate where SST 
anomalies are relatively more amplified in 2xCO2, while blue regions indicate where SST 
anomalies are relatively more amplified at the LGM. (A–E), LGM patterns corresponding to Fig. 
1A–E, and 2xCO2 reference pattern is Fig. 1F from LongRunMIP-2xCO2. (F) In CESM1-CAM5 
(23) mixed-layer ocean model without data assimilation, difference between 2xCO2 and LGM
patterns (shown in Fig. S5C–D).



Fig. S2. Sea-ice concentration (SIC) from data-assimilation reconstructions of the Last 
Glacial Maximum (LGM) compared to 2xCO2.  
(A) SIC from LGM Reanalysis (LGMR) (32), Amrhein (34), lgmDA (3), Annan (33) (assigned
SIC from Amrhein); mean of three LGM reconstructions (LGMR, Amrhein, and lgmDA); and
multi-model mean from near-equilibrium simulations of 2xCO2 in LongRunMIP (39), where
each of six models is averaged over final 200 years of simulation. (B) Difference in sea-ice
concentration relative to Late Holocene baseline (LGMR reconstruction). All panels show annual
mean. Reconstructions are infilled to modern coastlines (Materials and Methods).



Fig. S3. LGM pattern effect (Δλ) based on LGM climate feedbacks in AGCMs and CO2 
climate feedbacks from 150-yr regression of abrupt-4xCO2 in coupled models.  
Similar to Fig. 2, except λ2x is replaced by λ4x(150yr)/1.06, the feedback from regression in abrupt-
4xCO2 simulations (73) using parent coupled models corresponding to each AGCM; a timescale 
adjustment of 1/1.06 is applied based on the WCRP20 central estimate (1) to make 150-year 
4xCO2 feedbacks comparable with λLGM equilibrium feedbacks. Different models (all using the 
LGMR pattern for the LGM) are indicated by symbols. Different LGM patterns (in CAM5 and 
CAM4) are indicated by colors. (A) Scatter plot of 4xCO2 feedbacks (including adjustment factor 
of 1/1.06) versus LGM feedbacks, with λ4x(150yr)/1.06=λLGM shown as dashed line. (B) LGM 
pattern effect, Δλ= λ4x(150yr)/1.06−λLGM, using feedbacks shown in (A), with Δλ=0 shown as 
dashed line. Note that Δλ includes SST pattern effects and contributions from temperature 
dependence.  



Fig. S4. Uncertainty tests for modern-day climate sensitivity including LGM pattern 
effects.  
Following Fig. 4, showing WCRP20 original (1) LGM ΔTLGM~ N(μ=−5, σ=1) K in left column 
and revised LGM ΔTLGM~N(−6, 1) K based on IPCC AR6 (2) in right column, including two 
uncertainty tests. Results from WCRP20 (1) with no LGM pattern effect (gray and black) and 
our base assumption (light and dark blue) for revised Δλ~N(−0.37, 0.23) Wm−2K−1 from Fig. 4 
are repeated here for comparison. First uncertainty test (light and dark purple) increases the σ 
assumption by a factor of two: Δλ~N(−0.37, 0.46) Wm−2K−1. Second uncertainty test (light and 
dark red) concerns the 2xCO2 pattern and feedback: a different distribution, Δλ~N(−0.27, 0.20) 
Wm−2K−1, is assigned based on results shown in Ext. Data Fig. 3 using λ4x(150yr)/1.06, the 
feedback derived from 150-year regressions (73) of abrupt-4xCO2 using parent coupled models 
corresponding to each AGCM, including a timescale-adjustment factor of 1/1.06 from 
WCRP20’s central estimate (1). Climate sensitivity shown is effective sensitivity (S) from 150-
year response, as in WCRP20 (1). (A) Likelihood functions for S based on only the LGM line of 
evidence. (B) Posterior PDF after combining LGM with other lines of evidence in WCRP20 (1), 
assuming a uniform-λ prior (upper panel) or a uniform-S prior (lower panel). Outlier lines 
indicate 5–95th percentiles, dots indicate 66% likely range, and box indicates 25–75th percentiles 
and median. 



Fig. S5. Spatial patterns of sea-surface temperature (SST) response and effective radiative 
forcing (ERF) in CESM1-CAM5 model simulations from Zhu & Poulsen (23).  
Spatial patterns here are shown as zonal means in Fig. 2. All local anomalies are normalized 
through division by absolute value of global-mean anomaly. (A–B) SST patterns in quasi-
equilibrium from fully coupled atmosphere-ocean model with LGM ice-sheet and greenhouse-
gas forcings (23) compared to abrupt-4xCO2. (C–E) Equilibrium SST patterns from mixed-layer 
ocean model coupled to CAM5, including a simulation with only LGM ice-sheet forcing (23). 
(F–H) ERF patterns from corresponding AGCM simulations in CAM5. 



Fig. S6. Feedback decomposition of Last Glacial Maximum (LGM) and 2xCO2 climate 
feedbacks in atmospheric general circulation models (AGCMs).  
Left column uses direct model outputs in scatter plots of 2xCO2 feedbacks (λ2x) versus LGM 
feedbacks (λLGM), with λ2x=λLGM denoted by dashed line. Cloud radiative effect (CRE), 
shortwave clear-sky (SWcs), longwave clear-sky (LWcs), and net feedbacks are shown. (A) 
Results from various AGCMs, all using the LGMR reconstruction for the LGM. (B) Results 
from various LGM reconstructions in CAM4 and CAM5, with different reconstructions indicated 
by colors. Right column shows decomposition of Δλ using CAM5 radiative kernels (100), with 
residual equal to the net feedback in models minus the sum of kernel-derived feedbacks. (C) 
Results from various AGCMs (note that only net λ is available for HadGEM3). (D) Results from 
various LGM reconstructions in CAM4 and CAM5. Lapse rate and water vapor feedbacks are 
combined (LR+WV) given their anti-correlation across models (102). Note that Δλ includes SST 
pattern effects and contributions from temperature dependence.  



Fig. S7. Spatial decomposition of Last Glacial Maximum (LGM) and 2xCO2 local climate 
feedbacks in atmospheric general circulation models (AGCMs).  
Local feedbacks represent local change in top-of-atmosphere radiation (ΔNlocal) divided by 
global-mean change in near-surface air temperature (ΔTglobal); global integrals of the local 
feedbacks equal the global-mean feedbacks. Top row shows net feedback (λNet) from total all-sky 
changes in ΔN, second row shows λClearSky from changes in ΔN attributable to clear-sky 
radiation, third row shows cloud radiative effects (λCRE); rows 1–3 use direct model output. 
Fourth row shows radiative-kernel estimates of shortwave cloud feedbacks (λ9:;<=>? ). (A) 2xCO2 
multi-model mean based on five AGCM simulations using LongRunMIP (39) pattern. (B) LGM 
multi-model mean based on five AGCM simulations using LGMR (32) pattern. (C) LGM multi-
pattern mean in CAM5 using four LGM reconstructions. Note that radiative-kernel results for 
λ9:;<=>?  exclude HadGEM3 due to output limitations. 



Fig. S8. Separating pattern and temperature dependence of feedback changes as total 
Δλ≈ΔλPatternOnly+ΔλT.  
First column shows total Δλ=λ2x−λLGM from Figure 2, calculated in main simulations with full 
SST anomalies and SIC for 2xCO2 and LGM (using LGMR reconstruction). Second column 
shows pattern-only simulations with global-mean ΔSST scaled to −0.5 K, where 
ΔλPatternOnly≈λ4@%-./A − λ*+,%-./A. Third column shows temperature dependence, ΔλT, approximated as 
the residual difference between the main and pattern-only simulations, ΔλT≈Δλ–ΔλPatternOnly. 
Results in (A) CAM4, (B) CAM5, and (C) CAM6. 



Fig. S9. Likelihoods for LGM line of evidence with separate updates for SST pattern effects 
and temperature dependence of feedbacks.  
(Dotted) WCRP20 LGM likelihood (1), which includes an estimate of ΔλT for the LGM but no 
adjustment for pattern effects. (Dash-dot) Revised likelihood using WCRP20 estimate of ΔλT but 
including feedback changes from SST patterns based on pattern-only simulations in this study, 
assuming ΔλPatternOnly~N(μ=−0.51, σ=0.23) Wm−2K−1. (Solid) Revised likelihood using total 
revised Δλ from this study, as shown in Fig. 4, which includes both pattern effects and 
temperature dependence, assuming Δλ~N(−0.37, 0.23) Wm−2K−1. (A) All likelihoods assume 
ΔTLGM~N(−5, 1) K as in original WCRP20 results (1). (B) All likelihoods assume ΔTLGM~N(−6, 
1) K, using the updated central estimate from IPCC AR6 (2).



Fig. S10. Patterns of SST anomalies from Annan (33) ensemble members in quartile with 
strongest negative climate feedback (λ).  
19 ensemble members are ranked by estimated λ, which is produced from CAM5 Green’s 
functions (18), and 5 members shown comprise the quartile with most-negative estimated λ. (A–
E) Data-assimilation posterior SST using model priors specified in subtitles. (F) Pattern of the
quartile-mean SST. To show SST patterns, local SST anomalies are normalized into patterns
through division by absolute value of global-mean SST anomaly (consistent with feedbacks
being radiative responses divided by global-mean temperature anomalies). All panels show
annual means. LGM reconstructions are infilled to modern coastlines (Materials and Methods).



Fig. S11. Feedbacks and Δλ using either effective radiative forcing (ERF) or adjusted ERF 
from previously published simulations in mixed-layer ocean models. 
(A) Scatter plot of λ2x vs. λLGM in mixed-layer ocean models; λLGM is shown for simulations
using only the LGM ice-sheet forcing (dark blue), which includes LGM sea-level changes, and
for simulations using LGM ice-sheet forcing and greenhouse-gas (GHG) forcings (royal blue).
Dashed markers indicate corresponding results using “adjusted ERF” to calculate feedbacks. (B)
Δλ based on feedbacks shown in panel A. Note that in LGM simulations using CESM2.1-CAM6
(48) and CESM2-PaleoCalibr (49), the LGM ice-sheet forcing and GHG forcing are applied in
separate simulations, and their sums are shown as LGM Ice & GHG. This linearity assumption
was validated in CESM1-CAM5 (23).



Fig. S12. Zonal-mean net feedback and Δλ. 
(A) In CAM5, mean and range of feedbacks across four LGM reconstructions and 2xCO2 from
LongRunMIP. (B) In CAM5, mean and range of the difference in feedbacks (Δλ = λ2x − λLGM)
across four LGM reconstructions from results in (A). (C) Feedbacks across various AGCMs,
using the LGMR reconstruction of the LGM and 2xCO2 from LongRunMIP. (D) Mean and
range of Δλ across various AGCMs from results in (C). Note that HadGEM3 is not included in
the kernel-derived feedbacks due to limited model output.



Fig. S13. Zonal-mean shortwave clear-sky feedback and Δλ. 
(A) In CAM5, mean and range of feedbacks across four LGM reconstructions and 2xCO2 from
LongRunMIP. (B) In CAM5, mean and range of the difference in feedbacks (Δλ = λ2x − λLGM)
across four LGM reconstructions from results in (A). (C) Feedbacks across various AGCMs,
using the LGMR reconstruction of the LGM and 2xCO2 from LongRunMIP. (D) Mean and
range of Δλ across various AGCMs from results in (C). Note that HadGEM3 is not included in
the kernel-derived feedbacks due to limited model output.



Fig. S14. Zonal-mean longwave clear-sky feedback and Δλ. 
(A) In CAM5, mean and range of feedbacks across four LGM reconstructions and 2xCO2 from
LongRunMIP. (B) In CAM5, mean and range of the difference in feedbacks (Δλ = λ2x − λLGM)
across four LGM reconstructions from results in (A). (C) Feedbacks across various AGCMs,
using the LGMR reconstruction of the LGM and 2xCO2 from LongRunMIP. (D) Mean and
range of Δλ across various AGCMs from results in (C). Note that HadGEM3 is not included in
the kernel-derived feedbacks due to limited model output.



Fig. S15. Zonal-mean cloud radiative effect and Δλ. 
(A) In CAM5, mean and range of feedbacks across four LGM reconstructions and 2xCO2 from
LongRunMIP. (B) In CAM5, mean and range of the difference in feedbacks (Δλ = λ2x − λLGM)
across four LGM reconstructions from results in (A). (C) Feedbacks across various AGCMs,
using the LGMR reconstruction of the LGM and 2xCO2 from LongRunMIP. (D) Mean and
range of Δλ across various AGCMs from results in (C). Note that HadGEM3 is not included in
the kernel-derived feedbacks due to limited model output.



Fig. S16. Zonal-mean Planck response and Δλ. 
(A) In CAM5, mean and range of feedbacks across four LGM reconstructions and 2xCO2 from
LongRunMIP. (B) In CAM5, mean and range of the difference in feedbacks (Δλ = λ2x − λLGM)
across four LGM reconstructions from results in (A). (C) Feedbacks across various AGCMs,
using the LGMR reconstruction of the LGM and 2xCO2 from LongRunMIP. (D) Mean and
range of Δλ across various AGCMs from results in (C). Note that HadGEM3 is not included in
the kernel-derived feedbacks due to limited model output.



Fig. S17. Zonal-mean lapse rate feedback and Δλ. 
(A) In CAM5, mean and range of feedbacks across four LGM reconstructions and 2xCO2 from
LongRunMIP. (B) In CAM5, mean and range of the difference in feedbacks (Δλ = λ2x − λLGM)
across four LGM reconstructions from results in (A). (C) Feedbacks across various AGCMs,
using the LGMR reconstruction of the LGM and 2xCO2 from LongRunMIP. (D) Mean and
range of Δλ across various AGCMs from results in (C). Note that HadGEM3 is not included in
the kernel-derived feedbacks due to limited model output.



Fig. S18. Zonal-mean water vapor feedback and Δλ. 
(A) In CAM5, mean and range of feedbacks across four LGM reconstructions and 2xCO2 from
LongRunMIP. (B) In CAM5, mean and range of the difference in feedbacks (Δλ = λ2x − λLGM)
across four LGM reconstructions from results in (A). (C) Feedbacks across various AGCMs,
using the LGMR reconstruction of the LGM and 2xCO2 from LongRunMIP. (D) Mean and
range of Δλ across various AGCMs from results in (C). Note that HadGEM3 is not included in
the kernel-derived feedbacks due to limited model output.



Fig. S19. Zonal-mean surface albedo feedback and Δλ. 
(A) In CAM5, mean and range of feedbacks across four LGM reconstructions and 2xCO2 from
LongRunMIP. (B) In CAM5, mean and range of the difference in feedbacks (Δλ = λ2x − λLGM)
across four LGM reconstructions from results in (A). (C) Feedbacks across various AGCMs,
using the LGMR reconstruction of the LGM and 2xCO2 from LongRunMIP. (D) Mean and
range of Δλ across various AGCMs from results in (C). Note that HadGEM3 is not included in
the kernel-derived feedbacks due to limited model output.



Fig. S20. Zonal-mean shortwave cloud feedback and Δλ. 
(A) In CAM5, mean and range of feedbacks across four LGM reconstructions and 2xCO2 from
LongRunMIP. (B) In CAM5, mean and range of the difference in feedbacks (Δλ = λ2x − λLGM)
across four LGM reconstructions from results in (A). (C) Feedbacks across various AGCMs,
using the LGMR reconstruction of the LGM and 2xCO2 from LongRunMIP. (D) Mean and
range of Δλ across various AGCMs from results in (C). Note that HadGEM3 is not included in
the kernel-derived feedbacks due to limited model output.



Fig. S21. Zonal-mean longwave cloud feedback and Δλ. 
(A) In CAM5, mean and range of feedbacks across four LGM reconstructions and 2xCO2 from
LongRunMIP. (B) In CAM5, mean and range of the difference in feedbacks (Δλ = λ2x − λLGM)
across four LGM reconstructions from results in (A). (C) Feedbacks across various AGCMs,
using the LGMR reconstruction of the LGM and 2xCO2 from LongRunMIP. (D) Mean and
range of Δλ across various AGCMs from results in (C). Note that HadGEM3 is not included in
the kernel-derived feedbacks due to limited model output.



Fig. S22. Zonal-mean total (shortwave + longwave) cloud feedback and Δλ. 
(A) In CAM5, mean and range of feedbacks across four LGM reconstructions and 2xCO2 from
LongRunMIP. (B) In CAM5, mean and range of the difference in feedbacks (Δλ = λ2x − λLGM)
across four LGM reconstructions from results in (A). (C) Feedbacks across various AGCMs,
using the LGMR reconstruction of the LGM and 2xCO2 from LongRunMIP. (D) Mean and
range of Δλ across various AGCMs from results in (C). Note that HadGEM3 is not included in
the kernel-derived feedbacks due to limited model output.



Table S1. LGM pattern effect and climate feedbacks in various AGCMs. 

[Wm−2K−1] Δλ=λ2x–
λLGM 

λ2x
LongRunMIP 

λLGM
LGMR 

Δλ= 
λ4x(150yr)/(1+ζ)–λLGM

λ4x(150yr) ε =λ2x/λLGM
[unitless]

CAM4 −0.45 −1.47 −1.02 −0.14 −1.23 1.44 
CAM5 −0.31 −1.05 −0.74 −0.35 −1.15 1.42 
CAM6 −0.63 −0.83 −0.19 −0.43 −0.66 4.37 
GFDL-
AM4 

−0.33 −0.92 −0.60 −0.22 −0.86 1.53 

HadGEM3-
GC3.1-LL 

−0.27 −0.62 −0.34 −0.25 −0.63 1.82 

Mean −0.40 −0.98 −0.58 −0.28 −0.91 2.12 
Std. Dev. 0.15 0.32 0.32 0.11 0.28 1.27 

LGM pattern effect (Δλ) calculated as difference in net feedbacks (λ) from 2xCO2 and LGM. λ2x 
is calculated in AGCM simulations with LongRunMIP (39) 2xCO2 pattern of SST/SIC. λLGM is 
calculated in AGCM simulations with LGMR (32) pattern. Alternative values for (Δλ) are shown 
using 150-year regression of abrupt-4xCO2 from coupled models corresponding to each AGCM 
(17). ζ is assumed to be 0.06 based on WCRP20’s central estimate (1). Efficacy, ε, shown in 
right column. Note that CAM6 is an outlier in efficacy calculations. 



Table S2. LGM pattern effect and climate feedbacks from various SST patterns. 

Δλ=λ2x–λLGM
Wm−2K−1 

λ 

Wm−2K−1 
Δ!!"##### 
K 

Δ"$ 
K 

Δ%$ 
Wm−2 

Δλ=λ4x(150yr)/(1+ζ)–λLGM
Wm−2K−1 

ε=λ2x/λLGM 

CAM4 
     LGMR −0.45 −1.02 −3.79 −5.06 5.14 −0.14 1.44 
     lgmDA −0.69 −0.78 −3.14 −4.16 3.24 −0.38 1.88 
     Amrhein −0.48 −0.99 −2.21 −3.38 3.36 −0.17 1.48 
     Annan −0.29 −1.17 −2.18 −3.36 3.95 0.01 1.26 
     MeanCAM4 −0.48 −0.99 −2.83 −3.99 3.92 −0.17 1.52 
    StdDevCAM4 0.16 0.16 0.78 0.80 0.87 0.16 0.26 

     2xCO2 — −1.47 2.35 3.08 −4.52 — — 

CAM5 
     LGMR −0.31 −0.74 −3.79 −5.15 3.81 −0.35 1.42 
     lgmDA −0.51 −0.54 −3.14 −4.24 2.27 −0.55 1.94 

     Amrhein −0.33 −0.72 −2.21 −3.40 2.44 −0.37 1.46 
     Annan −0.09 −0.97 −2.18 −3.38 3.28 −0.11 1.08 

     MeanCAM5 −0.31 −0.74 −2.83 −4.05 2.95 −0.34 1.48 
    StdDevCAM5 0.18 0.18 0.78 0.84 0.72 0.18 0.35 

     2xCO2 — −1.05 2.35 3.09 −3.24 — — 

MeanCAM4&5 −0.39 −0.86 −2.83 −4.01 3.41 −0.26 1.50 
StdDevCAM4&5 0.21 0.21 0.72 0.76 0.90 0.18 0.29 

LGM pattern effect (Δλ) from net feedbacks (λ) in 2xCO2 and with various LGM patterns of 
SST/SIC. λ2x is calculated in AGCMs with LongRunMIP (39) 2xCO2 pattern of SST/SIC. λLGM 
is calculated in AGCM simulations with four LGM patterns. Global-mean anomalies for SST, 
near-surface air temperature (T), and top-of-atmosphere radiative imbalance (N) are shown for 
reference. Values for LGM pattern effect are also shown using 150-year regression of abrupt-
4xCO2 from coupled models (17). ζ is assumed to be 0.06 based on WCRP20 central estimate 
(1). Efficacy, ε, shown in right column.  



Table S3. Climate feedbacks and temperature dependence from pattern-only simulations. 

Wm−2K−1 !!"#$.&' !()*#$.&' "!+,-./01123, = 
!!"#$.&' − !()*#$.&' 

ΔλT = Δλ – Δ!+,-./01123, Δλ= "!+,-./01123, + ΔλT, 

Δλ= λ2x – λLGM

CAM4 −1.98 −1.55 −0.42 −0.03 −0.45

CAM5 −1.59 −1.24 −0.35 0.04 −0.31

CAM6 −1.30 −0.55 −0.75 0.12 −0.63

Mean −1.63 −1.12 −0.51 0.04 −0.47

ΔλPatternOnly from pattern-only simulations, where LongRunMIP (39) 2xCO2 and LGMR (32) 
patterns of SST anomalies are scaled to global-mean ΔSST of −0.5 K. Feedback dependence on 
global-mean temperature (ΔλT) is estimated as the residual between Δλ in main simulations and 
ΔλPatternOnly, i.e., assuming Δλ=ΔλPatternOnly+ΔλT. Note that total Δλ=λ2x–λLGM. 



Table S4. Summary Statistics for Posterior PDFs of Climate Sensitivity. 
PDF from combined lines of evidence (units, K) 5th % 17th % 50th % 83rd % 95th % Mean 

Assuming ΔTLGM ~ N(μ = –5.0, σ = 1.0) K, as in WCRP20 

WCRP20 Baseline (uniform-λ prior) 2.3 2.6 3.1 3.9 4.7 3.2 

… with Revised ΔλLGM ~ N(–0.37, 0.23) Wm–2K–1 2.1 2.3 2.8 3.4 4.0 2.9 

… … and 2x uncertainty, ΔλLGM ~ N(–0.37, 0.46) Wm–2K–1 2.1 2.4 2.9 3.6 4.3 3.0 

… … based on λ4x150yr, ΔλLGM ~ N(–0.27, 0.20) Wm–2K–1 2.1 2.4 2.8 3.4 4.0 2.9 

WCRP20 (uniform-S prior) 2.4 2.8 3.5 4.5 5.7 3.7 

... with Revised ΔλLGM ~ N(–0.37, 0.23) Wm–2K–1 2.2 2.5 3.0 3.8 4.6 3.2 

… … and 2x uncertainty, ΔλLGM ~ N(–0.37, 0.46) Wm–2K–1 2.3 2.6 3.2 4.1 5.1 3.4 

… … based on λ4x150yr, ΔλLGM ~ N(–0.27, 0.20) Wm–2K–1 2.2 2.5 3.1 3.8 4.6 3.2 

Assuming ΔTLGM ~ N(–6.0, 1.0) K 

WCRP20 Baseline (uniform-λ prior) 2.3 2.7 3.2 4.1 5.0 3.4 

... with Revised ΔλLGM ~ N(–0.37, 0.23) Wm–2K–1 2.1 2.4 2.9 3.5 4.1 3.0 

… … and 2x uncertainty, ΔλLGM ~ N(–0.37, 0.46) Wm–2K–1 2.2 2.5 3.0 3.7 4.4 3.1 

… … based on λ4x150yr, ΔλLGM ~ N(–0.27, 0.20) Wm–2K–1 2.2 2.4 2.9 3.5 4.2 3.0 

WCRP20 (uniform-S prior) 2.5 2.9 3.7 4.8 6.1 3.9 

... with Revised ΔλLGM ~ N(–0.37, 0.23) Wm–2K–1 2.3 2.6 3.1 3.9 4.7 3.3 

… … and 2x uncertainty, ΔλLGM ~ N(–0.37, 0.46) Wm–2K–1 2.3 2.7 3.3 4.3 5.3 3.5 

… … based on λ4x150yr, ΔλLGM ~ N(–0.27, 0.20) Wm–2K–1 2.3 2.6 3.2 4.0 4.8 3.3 

PDF from LGM evidence alone (uniform-S prior) 5th % 17th % 50th % 83rd % 95th % Mean 

Assuming ΔTLGM ~ N(–5.0, 1.0) K as in WCRP20 

WCRP20 1.7 2.4 4.5 10.6 16.5 6.2 

... with Revised ΔλLGM ~ N(–0.37, 0.23) Wm–2K–1 1.1 1.5 2.1 3.0 4.2 2.3 
… … and 2x uncertainty, ΔλLGM ~ N(–0.37, 0.46) Wm–2K–1 1.2 1.5 2.4 4.7 10.0 3.4 

Assuming ΔTLGM ~ N(–6.0, 1.0) K 

WCRP20 2.3 3.4 6.8 13.9 18.0 8.2 

... with Revised ΔλLGM ~ N(–0.37, 0.23) Wm–2K–1 1.4 1.7 2.4 3.5 5.0 2.7 

… … and 2x uncertainty, ΔλLGM ~ N(–0.37, 0.46) Wm–2K–1 1.4 1.9 3.0 6.4 13.0 4.3 

Note: The posterior PDF from LGM evidence alone uses the uniform-S prior (0, 20) K, hence the 
shape of the posterior PDF matches that of the LGM likelihood. Methods follow WCRP20 (1). 
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