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Paleoclimates provide examples of past climate change that inform estimates of modern
warming from greenhouse-gas emissions, known as Earth’s climate sensitivity. However,
differences between past and present climate change must be accounted for when inferring
climate sensitivity from paleoclimate evidence. The closest paleoclimate analog to near-
term warming from greenhouse-gas emissions is the Pliocene (5.3-2.6 Ma), a warm epoch
with atmospheric CO, concentrations similar to today. Recent reconstructions indicate the
Pliocene was 1°C warmer than previously thought, implying higher climate sensitivity, which
is also supported by recent reconstructions showing more cooling with reduced CO; at the
Last Glacial Maximum (LGM; 19-23 thousand years ago). However, large-scale patterns of
paleoclimate temperature change differ strongly from modern projections. Climate feedbacks
and sensitivity depend on temperature patterns, and such “pattern effects” must be accounted
for when using paleoclimates to constrain modern climate sensitivity. Here we combine data-
assimilation reconstructions with atmospheric general circulation models to show Earth’s
climate is more sensitive to Pliocene forcing than modern CO, forcing. Pliocene ice sheets,
topography, and vegetation alter patterns of ocean warming and excite destabilizing cloud
feedbacks, and LGM feedbacks are similarly amplified by the North American ice sheets.
Accounting for paleoclimate pattern effects produces a best estimate (median) for modern
climate sensitivity of 2.8°C and 66% confidence interval of 2.4-3.4°C (90% CI: 2.1-4.0°C),
substantially reducing uncertainty in projections of 215t-century warming.

climate dynamics | climate sensitivity | paleoclimate | cloud feedbacks | climate projections

he paleoclimate record constitutes a series of natural experiments providing

fundamental insights into Earth’s climate sensitivity. Using paleoclimate
evidence to constrain the modern sensitivity to rising greenhouse-gas (GHQG)
concentrations requires accounting for differences in both climate forcings and
feedbacks between past and modern climates (1-3). A key driver of such feedback
differences across past climates is variation in the spatial pattern of sea-surface
temperature, i.e., “paleoclimate pattern effects” (3). Pattern effects are variations
in climate sensitivity and feedbacks that depend on spatial patterns of temperature
change (e.g., 4-8), and they arise in paleoclimates when non-GHG forcings (such
as ice sheets, topography, and vegetation) affect large-scale temperature patterns.
Paleoclimate pattern effects can have major impacts on estimates of modern climate
sensitivity if non-COz forcings strongly influence past temperature patterns, thereby
producing climate feedbacks in the past that differ from those governing modern
warming from GHG forcing (3).

The Pliocene (5.3-2.6 Ma) is the closest analog to near-term warming from GHG
emissions (9). Its mid-Piacenzian warm period (3.3-3.0 Ma), hereafter “Pliocene,”
is the most recent epoch with atmospheric COz levels (near 400 ppm) similar to
today (10). Pliocene warming thus provides an important constraint on the modern
equilibrium climate sensitivity (ECS), the steady-state response of global-mean
near-surface air temperature to a doubling of atmospheric CO2 from preindustrial
levels (2, 11). Previous assessments of Pliocene proxies report approximately 3°C
of global warming from preindustrial conditions and an upper bound of 4°C (2, 11).
However, recent reconstructions find a much warmer Pliocene with central estimates
of 4°C (12, 13). This revision to Pliocene warming suggests much higher ECS of
4.8°C (12) and increased likelihood of the worst-case projections of 215°-century
warming. Notably, high ECS of 4.8°C has also been reported (14) based on recent
reconstructions (15-17) showing colder global-mean temperatures at the Last Glacial
Maximum (LGM; 19-23 ka). But these globally resolved reconstructions tell us more
than global means—they capture the spatial pattern of paleoclimate temperature
change, and this spatial information is essential to constraining modern ECS.
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Significance Statement

Climate sensitivity’s uncertain up-
per bound determines the worst-
case projections of global warm-
ing. Recent paleoclimate recon-
structions suggest high sensitivity
of 5°C per CO, doubling. How-
ever, by analyzing spatial patterns
of Pliocene warming—the closest
analog to near-term warming—we
show that ice sheets and topogra-
phy amplified past warming through
regional impacts on oceans and
clouds. Similarly, the Last Glacial
Maximum’s cooling was amplified
by ocean and cloud responses to
massive ice sheets. Because these
amplifying feedbacks are associ-
ated with non-CO; forcings unique
to paleoclimates, the upper bound
on modern warming from doubling
CO:; is reduced by 1°C, constrain-
ing climate sensitivity to 2.1-4.0°C
(90% confidence). Thus paleo-
climate evidence revises climate
sensitivity’s upper bound and 21°'-
century warming projections.

Author affiliations: ®Dept. of Atmospheric and Climate Science,
University of Washington, Seattle, WA, USA; bSchool of
Oceanography, University of Washington, Seattle, WA, USA;
“Dept. of Geosciences, University of Arizona, Tucson, AZ,
USA; dDept. of Atmospheric, Oceanic and Earth Sciences,
George Mason University, Fairfax, VA, USA; ©Dept. of Climate,
Meteorology, and Atmospheric Sciences, University of lllinois
at Urbana-Champaign, Champaign, IL, USA; fMet Office
Hadley Centre, Exeter, UK; &School of Earth and Environment,
University of Leeds, Leeds, UK; hCooperative Programs
for the Advancement of Earth System Science, University
Corporation for Atmospheric Research, Boulder, CO, USA;
'NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, NJ,
USA; J Dept. of Geosciences, University of Connecticut, Storrs,
CT, USA; kDept. of Geography, The University of Cambridge,
Cambridge, UK; ! Dept. of Atmospheric and Oceanic Sciences,
University of California Los Angeles, Los Angeles, CA, USA

The authors declare no competing interests.

TCurrent affiliation: Department of Earth, Atmospheric, and
Planetary Sciences, Massachusetts Institute of Technology,
Cambridge, MA

2To whom correspondence should be addressed. E-mail:
vcooper@mit.edu

no. XX — 1-9

63
64
65

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124


www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

To infer modern ECS from Pliocene evidence, we must
consider differences in both forcing and feedbacks between the
Pliocene and present climate. The Pliocene has both elevated
GHG levels (10, 18) as well as additional forcing from (i)
reduced ice sheets over West Antarctica and Greenland, (ii)
increased vegetation, especially over northern high latitudes,
and (iii) changes in land-sea distribution (1, 2, 19, 20).
Previous work found that the Pliocene’s global-mean warming
is mostly attributable to CO2 (21-23). However, modeling
studies show that the non-COz forcings drive distinct climate
responses especially at regional scales (e.g., 21, 23-28), and
that Pliocene temperature patterns may differ substantially
from those in response to modern CO; forcing (24), thereby
producing different climate feedbacks. Accounting for such
pattern effects in cold-period evidence from the LGM leads
to stronger constraints on modern ECS (3). The key question
addressed here is: would accounting for Pliocene pattern
effects also strengthen constraints on modern ECS?

We quantify Pliocene pattern effects by synthesizing proxy
data with climate models, and we use these results to revise
estimates of modern ECS and 21°*-century warming. Spatially
complete reconstructions of the Pliocene (12, 13) from paleo-
climate data assimilation (15, 16, 29) are used in numerical
simulations with five atmospheric general circulation models
(AGCMs) to quantify relationships between temperature
patterns and climate feedbacks (e.g., 3, 5). We analyze
differences between feedbacks in the Pliocene compared to
modern warming from COz. We then combine our Pliocene
results with an investigation of the LGM (3), and we quantify
the impacts of the feedback differences on estimates of modern
ECS and projections of 21%*-century warming.

Overview of paleoclimate pattern effects and ECS

Modern ECS, climate feedbacks, and paleoclimate pattern
effects are related through the global-mean energy balance,

AN = AF + \AT, 1]

where AN is the change in top-of-atmosphere radiative
balance; AF is the “effective” radiative forcing, i.e., the
change in net downward radiative flux after atmospheric
adjustments to imposed perturbations, excluding radiative
responses to changing surface temperature (11); A is the net
climate feedback (negative for stable climates); and AT is the
change in near-surface air temperature. All values are global
means, and differences (A) are relative to the preindustrial
baseline. When the forcing is a doubling of preindustrial CO2
concentrations (2xCOz), and the climate reaches equilibrium
(AN = 0), the resulting AT is the modern ECS:

ECS = _AF2XCOQ/>\QXCOQ7 [2]

where AFocco, is the effective radiative forcing and Aaxco,
is the net feedback from modern COs doubling. Increasingly
negative values of A indicate more-stable climates and lower
ECS.

Paleoclimate pattern effects (A)) are quantified as the
difference between Aoxco, and a paleoclimate feedback, e.g.,
the Pliocene feedback (Apiio), due to differences in the spatial
patterns of warming:

AX = Aa2xcos — APlio- 3]

2 — www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

A also can vary with global-mean temperature (e.g., 2, 3, 30).
However, this temperature dependence can be omitted for
the Pliocene due to similar levels of global warming from
Pliocene and 2xCO; forcings (2), and it is relatively small
for LGM levels of global cooling (3, 31).

Modern ECS and A2xco, can be constrained by estimating
Aplio and A\, then combining Equations 2 and 3:

ECS = —AFoco,/(Aplio + AN). [4]

AM depends on spatial patterns of Pliocene temperature
anomalies, for which we use state-of-the-art reconstructions
from data assimilation (12, 13) as boundary conditions for
simulations using five AGCMs, as described in the following
section.

Pliocene pattern effects from data assimilation

Patterns of Pliocene sea-surface temperature.In Fig. 1,
we compare the projected sea-surface temperature (SST)
anomalies from modern 2xCQOs3, based on the multi-model
mean of quasi-equilibrium simulations in LongRunMIP (32),
with the various Pliocene reconstructions from “plioDA” (12)
and ref. (13) that we use to quantify Pliocene pattern effects.
The Pliocene patterns include the best estimates from plioDA
(12) and ref. (13), as well as alternate plioDA reconstructions
that test structural uncertainty and endmembers of the
plioDA ensemble (Fig. 1; Fig. S1-S4) (Methods).

The paleoclimate reconstructions use data assimilation
(e.g., 15, 16, 29, 33-35), which optimally combines dynamical
constraints from climate models with observational con-
straints from proxy data. In brief, the method begins with
a “model prior,” i.e., a distribution of possible climate states
defined by an ensemble of simulations in coupled climate
models. Proxy data are then evaluated against the prior,
which updates the prior according to its covariance structure,
weighting the relative errors in the proxies and the prior.
The final result is a posterior distribution of climate states
constrained by the data and the models’ dynamics. The
best estimate of the state is the reconstruction’s ensemble
mean, while its ensemble members sample the uncertainty.
The reconstruction’s results depend on specific aspects of the
methods, model priors (36), and observations.

To address reconstruction uncertainty, we analyze pattern
effects across a wide range of possible Pliocene temperature
patterns that use different assimilation methods, model priors,
and subsets of proxy data. Focusing on sensitivity to the
model prior, the “PlioMIP2 Prior” version of plioDA uses
14 PlioMIP2 simulations (37) to inform its prior. The
“Perturbed Cloud Prior” uses 21 simulations that are designed
to capture Pliocene temperature gradients by substantially
altering models’ cloud physics instead of changing the pale-
oenvironmental boundary conditions (38-40). Focusing on
sensitivity to the proxy network, the “PlioVar Data” version
restricts data to the KMbc interglacial (41), and we also test
endmembers of the plioDA ensemble (Fig. S4) (Methods).
Ref. (13) and plioDA (12) have partially overlapping proxy
networks, model priors (both best estimates include simula-
tions from PlioMIP2), and assimilation methods (ensemble
Kalman filter); however, there are substantial differences
between the two reconstruction efforts in terms of the proxies
included, model priors, and methods (e.g., forward modeling

Cooper et al.
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Fig. 1. Patterns of sea-surface temperature (SST) anomalies and effective radiative forcing (ERF). (A) Multi-model mean of modern SST response to 2xCO5 in
quasi-equilibrium simulations from LongRunMIP (32). (B—F) Data-assimilation reconstructions from: (B) plioDA best estimate (12); alternate plioDA using (C) only the PlioVar
proxy data representing the KM5c interglacial, (D) only the PlioMIP2 prior, or (E) only the perturbed-cloud prior; and (F) best estimate from ref. (13). ERF from (G) modern
2xCO3 and (H) Pliocene total forcing, including greenhouse gases, reduced Greenland and Antarctic ice sheets, sea level, and vegetation (24). All panels show annual-mean
anomalies, and local values are divided by global means. Pliocene SSTs are infilled to modern coastlines.

of proxies in plioDA) that lead to differences in their results
(12) (Fig. 1b,f).

Despite the substantial uncertainty in the details of the
Pliocene SST patterns shown in Fig. 1, the reconstructions
all have two common features that distinguish the Pliocene
from the modern response to 2xCOs: the Pliocene has
amplified SST warming in the Southern Ocean and the
North Atlantic Ocean (Fig. 1; Fig. S1). The distinct
Pliocene warming pattern is driven by the distinct spatial
pattern of Pliocene forcing (Fig. 1h) (24), which arises
from the Pliocene’s non-CO; forcings (changes in ice sheets,
topography, and vegetation) and differs substantially from

the relatively uniform forcing produced by CO; alone (Fig.

1g). We note that the Bering Strait is closed in Fig. 1h
following refs. (20, 37, 42), although geological evidence

Cooper etal.

suggests the Bering Strait began opening prior to the Pliocene
(43). Importantly, the SST reconstructions show amplified
warming in the North Atlantic Ocean because of the proxy
data, and that result is not sensitive to models’ Bering Strait
configuration (12). The connection between the non-COz
Pliocene forcings and the SST patterns they produce has
been demonstrated in coupled climate models (24), which we
return to in the Discussion.

Quantifying feedbacks and pattern effects. We estimate the
net climate feedback, A, for each warming pattern in Fig.
1 using AGCM simulations with prescribed SST and sea-
ice concentration (SIC) (Methods). Following ref. (3),
we begin with a control simulation using the preindustrial
“baseline” pattern (16). We repeat the AGCM simulations,

PNAS — January 4,2026 — vol. XXX — no. XX — 3

311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372



373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407

409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434

A
0.0
AGCMs: Symbols
A CAM4

_05 - ® CAM5
T > v CAM6
& / v # HadGEM3
g ot ¢ GFDL-AM4
s —1.04
a &
= 154

-2.0 T T T

-2.0 -1.5 -1.0 -0.5 0.0
Ao [W m2K~1]
B
CAM4 CAM5 CAM6 HadGEM3 AM4
1 1 1 1 1
0.2 SST Patterns

hrpd Tierney et al. (2025)
L 00 plioDA: Best Estimate
TE plioDA: PlioMIP2 Prior

—0.2 4 plioDA: Cloud Prior
EQ A ° * plioDA: PlioVar Data
T _ _ Annan et al. (2024)
T 04 v ®  Best Estimate
S ned plioDA: 5th — 95th
B 06 percentiles
I
3 —0.8

_1_0 -

Fig. 2. Net climate feedbacks (\) and Pliocene pattern effect (AX). Note
that each legend applies to both panels; different atmospheric general circulation
models (AGCMs) are denoted by symbols, and different Pliocene warming patterns
are denoted by colors and borders. (A) Scatter plot of Aaxco, Versus Apiio for
each AGCM and Pliocene pattern, with Aaxco, = Apiio shown as solid line. (B)
Pliocene pattern effect, AA = A2xco, — Aplio, Using values in panel A. Error
bars for plioDA represent endmembers of the ensemble reconstruction (Methods).

changing only the SST and SIC to the 2xCO2 pattern from
LongRunMIP (Fig. 1a) and to each of the Pliocene patterns
(Fig. 1b—e; SIC in Fig. S2-S4). We hold the forcings constant
at modern levels across all simulations to isolate the radiative
response to changes in surface temperature (Methods). For
each simulation, we calculate AN and AT relative to the
preindustrial baseline, and the net feedback is A = AN/AT
from Eq. 1 with AF = 0.

In Fig. 2, we compare A2xco, with Apiio and quantify
Pliocene pattern effects (AX). In all five AGCMs, Apiio is
more positive (meaning more amplifying and less stable)
than Aoxco,, which means that the climate system is more
sensitive to Pliocene forcing than it is to modern 2xCOq
forcing. We test whether this result is robust despite
uncertainties in atmospheric model physics and Pliocene
reconstructions by running the simulations in CAM4, CAMS5,
CAM6, GFDL-AM4, and HadGEM3-GC3.1-LL, and by
testing three different Pliocene patterns (Fig 1B,D,F) in all
five AGCMs. We test additional Pliocene patterns, including
the 5™ and 95™ percentiles of the plioDA ensemble (Fig. S4),
in CAM4 and CAM5 (Methods). Despite the uncertainties
in Pliocene SST patterns and atmospheric model physics,
there is a clear Pliocene pattern effect with A\ < 0 (Fig. 2b),
albeit with uncertain magnitude.

In summary, the Pliocene warming pattern excites more-
positive (more-amplifying) climate feedbacks compared to the
2xCO2 warming pattern (Apiio>MA2xco,), i-e., the Pliocene

4 — www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

pattern effect is negative (AX < 0). As will be shown below,
the negative pattern effect indicates that positive feedbacks
amplifying Pliocene warming do not play an equivalent role
in the modern climate’s response to greenhouse-gas forcing.
Accounting for this negative Pliocene pattern effect would
lead to lower estimates of modern ECS and future warming

(Eq. 4) (3).

Mechanisms responsible for Pliocene pattern effects. To
diagnose the mechanisms contributing to more-positive
climate feedbacks in the Pliocene, we first use radiative
kernels to assess each component feedback within the AGCM
simulations. Kernels are precomputed sensitivities of radia-
tive fluxes to perturbations in temperature, water vapor,
and surface albedo, enabling efficient estimation of various
feedbacks (Methods) (44). We find that the cloud feedback
(Acloud ), namely the shortwave component associated with low
clouds, is the dominant driver of Apiioc > A2xco, (Fig. S5-S6).
The combined lapse-rate and water-vapor feedbacks make
an additional contribution to more-positive Apio (Fig. S5).
Next, we inspect the spatial distribution of the Pliocene’s
more-positive cloud feedbacks to understand their source.

In Fig. 3, we compare the spatial patterns of Acioua in
the Pliocene versus 2xCQO3. The most pronounced differences
are over the Southern Ocean (Indian sector) and the North
Atlantic. The zonal mean of Alcioua (Fig. 3a) illustrates that
the Pliocene’s extratropical cloud feedbacks are responsible
for Apiioc > A2xco,, supported by extratropical lapse-rate
feedbacks (Fig. S9). Comparing Fig. 3’s Acioua with Fig.
1’s SST patterns (zonal mean SST in Fig. S10), we see
that the regions with amplified Pliocene SST anomalies
are approximately collocated with the amplified Pliocene
Acloud- That is, amplified SST anomalies in the extratropics
are responsible for more-positive feedbacks in the Pliocene,
which is consistent with a similar analysis of the Last Glacial
Maximum (3). When SST warming is strongly amplified in
the extratropics compared to the SST warming in tropical
regions of atmospheric deep convection (e.g., the west Pacific
warm pool), tropospheric stability is decreased and low-cloud
cover is reduced, which is a positive feedback on the initial
warming (3, 7, 45). Past studies of the Pliocene emphasize the
zonal SST in the tropical Pacific and meridional temperature
gradients (12, 22, 46-50), while we find that the amplification
of warming in the North Atlantic and especially the Southern
Ocean are the dominant features that distinguish Pliocene
feedbacks from the modern response to 2xCO;.

The final and essential aspect of the mechanism is that
amplified warming in the Southern Ocean and North Atlantic
is due to non-CO2 forcings (ice sheets, vegetation, and
topography), as shown in Fig. S11. This attribution has been
illustrated by simulations in coupled climate models that
separate the SST response to Pliocene CO2 versus non-CQO2
forcings (e.g., 21, 23, 24, 37). Pliocene warming in the North
Atlantic is amplified by closure of Arctic ocean gateways
through changes in the Atlantic Meridional Overturning
Circulation (AMOC) (e.g., 25, 51, 52), reductions in ice sheets
(27), and vegetation changes (21). Further investigation of
the Bering Strait’s role is warranted given its openings before
and after the Pliocene (e.g., 43). Amplified warming in the
Southern Ocean is associated with the reduced Antarctic Ice
Sheet and topography through changes in ocean circulation
(24, 53). While amplified warming of the Southern Ocean
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Fig. 3. Cloud feedbacks from modern CO- forcing versus Pliocene warming. (A) Zonal means of panels B, C, and their difference, Ac1oud; Negative values of
AXcloua contribute to the negative Pliocene pattern effect. (B—C) Spatial distributions of cloud feedbacks, Acioua = ANlocal/E, where A Njocal is the local anomaly in
top-of-atmosphere radiation attributable to cloud feedbacks (estimated with radiative kernels), and AT is the global-mean T" anomaly. Multi-model mean of (B) Acioud USINg
the LongRunMIP 2xCO4 pattern and (C) multi-pattern mean Aciouda from Pliocene patterns in Fig. 1B,D,F (plioDA best estimate (12), alternate plioDA using only the PlioMIP2
prior, and ref. (13) best estimate; these patterns were tested in all atmosphere models). All panels show multi-model means across atmosphere models.

appears in all reconstructions (Fig. 1), its magnitude is
uncertain due to sparse proxy data, and this uncertainty

makes a large contribution to our spread in A\ (Fig. S8-S10).

We also note that the Southern Ocean continues to warm
on the millennial timescale in LongRunMIP’s COs-forcing
simulations (32), and the true equilibrium response to CO2
forcing is uncertain. More work is needed to understand
how much of the Pliocene’s warming pattern is directly
attributable to the equilibrated response to CO2 versus
non-CQO2 forcing. LGM reconstructions, however, do not
show a Pliocene-like amplification in the Southern Ocean (3),
suggesting that the long-timescale direct response to COx2 is
not the key driver of the Pliocene pattern in the Southern
Ocean. Compared to coupled models’ Pliocene simulations,
both the North Atlantic and Southern Ocean SST features are
even more pronounced in data-assimilation reconstructions
constrained by paleoclimate proxies (Fig. 1) (12, 13). Thus
coupled models are essential for illustrating mechanisms of
paleoclimate pattern effects, and incorporating observational
constraints through data assimilation is key to producing
reliable SST patterns and constraining A\.

While our comparison of the Pliocene versus modern
2xCO; uses the LongRunMIP pattern (32), we note that
there is substantial uncertainty in the projected SST pattern
from 2xCQO2. However, because Pliocene and LGM pattern
effects arise from how non-CO; forcings shape paleoclimate
temperature patterns, we expect conclusions about A\ to be
relatively insensitive to uncertainty in the SST pattern from
CO; forcing. Furthermore, ref. (54) finds that the feedback
uncertainty from COs-forced SST patterns is only 10% of the
total feedback spread across different models. That result
emphasizes the importance of using multiple atmospheric
models to quantify AX and that the feedback spread from
CO2-forced patterns is small compared to that arising from
the Pliocene reconstructions. We test whether results are
sensitive to the 2xCOx2 pattern and find this uncertainty does
not affect the conclusions (Methods).

In summary, non-CO2 forcings from ice sheets, topography,
and vegetation altered the spatial pattern of ocean warming,
in turn producing positive cloud feedbacks in the extratropics
that strongly amplified global warming during the Pliocene
(Fig. 3). Because of these amplifying feedbacks, more of
the Pliocene warming was caused by non-COz forcings than

Cooper et al.

previously thought, meaning that less of the warming is
attributable to elevated COgz alone. Since these amplifying
feedbacks from non-CO; forcing do not play a role in
the modern response to 2xCQO, alone, we now show that
accounting for the Pliocene pattern effect lowers estimates
of modern ECS and reduces the likelihood of worst-case
projections for 21%°-century warming.

Modern climate sensitivity and 215!-century warming

To constrain modern ECS with paleoclimate evidence, we first
infer climate feedbacks during a paleoclimate period from
changes in Earth’s energy budget, and then we account for
differences relative to the modern response to 2xCO2 (1-3).
Measures of climate sensitivity depend on the timescale of
interest, and we follow ref. (2), hereafter “SW20,” in focusing
on the 150-year timescale of “effective” climate sensitivity
(S), and in treating slow paleoclimate feedbacks, e.g., ice
sheets, as radiative forcings (1).

First, we estimate Apio by applying Equation 1 to the
Pliocene (Methods). We update ATpii, from SW20’s values
of 3.0 £ 1.0 °C (1o) to plioDA’s result of ATpi, = 4.1 £
0.6 °C (1o). We also update the non-GHG (greenhouse
gas) effective radiative forcing to AFnoncue = 1.7 £
1.0 (lo) W m™2 (24). Given that AFguc ~ 2.2 W m™?2
(2, 24), we have a central estimate of total AFpi, =
3.9 W m™?2 and Apiio & —1.0 W m™2 K~ (Methods).

The novel aspect of the modern ECS constraint in this
study is the inclusion of paleoclimate pattern effects for the
Pliocene (A); Eq. 3 and 4) and the synthesis with pattern
effects for the Last Glacial Maximum (3). We combine
uncertainty across SST patterns and atmospheric models (Fig.
2; Methods), which produces a central estimate for Pliocene
pattern effects of AN = —0.37 £ 0.32 (1) Wm 2 K~*. We
adapt the Bayesian framework of SW20 to include Pliocene
A\, following ref. (3) (Methods).

In Fig. 4a, we show the S likelihoods from Pliocene
evidence alone. For comparison, we include the original
SW20 results and the likelihood with updated Pliocene global-
mean AT and AFnoncua but excluding Pliocene pattern
effects. As seen in Fig. 4a, the updates from the global-mean
information alone (excluding AMX) suggest a much higher
ECS (12). However, the spatial information in the Pliocene
reconstructions—quantified as AA—has a larger and opposite
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A Pliocene Likelihood for Climate Sensitivity [°C]

107 . original sw20 S
0.8 4 __ Updated SW20
g T Excl. AA
© 0.6 1 Full Update
% Incl. AA
X 0.4 1
-
0.2 1
0.0 = T T T T T 1
0 1 2 3 4 5 6
B Combined Evidence for Climate Sensitivity [°C]
Original SW20 |_._|:|:|_.—| Fig. 4. Modern climate sensitivity and 21%'-century
warming, accounting for paleoclimate pattern effects
Updated SW20 — 1 (AN). (A) Pliocene-only likelihoods (dotted) from SW20
.I udi (2); (gray) including updates to ATpj;, and AFpy;, but ex-
On|;CP|Li]0 '25\; cluding pattern effects (AX); (orange) fully updated SW20
Including including A\. (B) Posterior probability density functions
Only LGM AA (PDFs) after combining lines of evidence: (gray, white fill)
Full Update SW20, (gray, gray fill) SW20 with updated paleoclimate AT
Pliocene & LGM AA and AF but excluding A\, (orange) including A X only for
0 '1 é é :1 é "3 the Pliocene, (blue) A X only for the Last Glacial Maximum
(LGM) (3), and (orange, blue fill) Full Update including
C 21-Century Warming Projections: SSP2-4.5 [°C] Pliocene and LGM A\. Panels A-B show effective climate
IPCC AR6 Method sensitivity (S), as in SW20. (C) Projected global warming
from the FalR model (55), measured as mean anomaly
Original SW20 |__|:|:|_._| over 2081-2100 relative to 1850-1900 mean, using climate
sensitivity distribution from IPCC AR6 (11), then using three
U&‘i?ﬁgégﬁg I—-I:l:l—'—| distributions from panel B: SW20, updated SW20 excluding
) paleoclimate A, and the Full Update. Line caps indicate
Full Update th th : indi p
Pliocene & LGM AA 5" to 95" percentiles, dots indicate 66% likely range,
. Il é é "1 é é box indicates 25" to 75" percentiles, and line indicates

impact. Including A\ shifts the maximum likelihood from
3.7°C to 2.7°C and substantially reduces the high tail of the
distribution.

We now revise the best estimate for modern ECS by
combining the Pliocene with the additional lines of evidence
in SW20: the Last Glacial Maximum (LGM), the histor-
ical record (c. 1870-present), and process understanding
(Methods) (Fig. 4b). We first show SW20’s results, then we
include paleoclimate updates only to global-mean quantities
(i.e., excluding AX), which increases ECS substantially. We
then include A\ from only the Pliocene or LGM (3), and
finally we combine our results for Pliocene and LGM A\ to
provide a best estimate that fully accounts for paleoclimate
pattern effects and their uncertainties. Once again, global-
mean paleoclimate updates increase ECS, but the spatial
information from pattern effects is more impactful and
leads to much stronger overall constraints, particularly for
the upper bound. The revised best estimate (median) for
modern ECS becomes 2.8°C, with a 66% range of 2.4 —3.4°C
(90% CI: 2.1 — 4.0°C) (Fig. 4b; Table S3). This range
represents a major update to the upper bounds in SW20 (2)
and the IPCC Sixth Assessment report (AR6) (11), while
our lower bound confirms those assessments. For comparison
with SW20’s robustness tests, we find a 66% robust range of
2.6 — 3.8°C (90% CI: 2.3 — 4.6°C), which also represents a
much stronger constraint compared to the 95" percentile of
5.7°C in SW20’s robust range.

Importantly, our updates to modern ECS also reduce
uncertainty in projections of 21%*-century warming. Fig. 4c
shows the 2081-2100 mean warming relative to 1850-1900
projected by the FalR model (55), a climate emulator that
produced projections for IPCC ARG, under the SSP2-4.5
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median.

emissions scenario (11). FalR’s large ensemble is calibrated
to match the historical record through 2022 while sampling
the full range of uncertainty in ECS (55). We first make
a minor revision to the FalR ensemble’s ECS distribution
to match SW20 (Methods), and then we include the pale-
oclimate updates only to global-mean quantities in SW20
(i.e., excluding A\); this yields a median of 2.7°C for end-of-
century warming (relative to preindustrial) and a 66% likely
range of 2.4 — 3.2°C (90% CI: 2.1 — 3.5°C). We then use our
fully updated ECS distribution from Figure 4b with the FalR
model, which yields a median of 2.5°C for end-of-century
warming and substantially reduces uncertainty in the upper
bound of warming projections, with a 66% likely range of
2.1-2.9°C (90% CI: 1.9 — 3.2°C) (Fig. 4c).

Pliocene pattern effects arise from changes in ice sheets,
vegetation, and topography that amplify SST warming in the
extratropics, in turn leading to cloud feedbacks that further
amplify global warming. Recent work on the Last Glacial
Maximum also found that ice sheets amplify extratropical
SST cooling, similarly leading to positive cloud feedbacks
(3). The modern climate feedback from CO; alone (in the
absence of ice sheet, vegetation, and topography changes)
is more stabilizing than the feedbacks associated with the
Pliocene and LGM.

Updating global mean Pliocene and LGM temperatures
based on the latest state-of-the-art reconstructions, while
neglecting pattern effects, appears to suggest substantially
higher estimates of climate sensitivity compared to SW20
(2) and IPCC AR6 (11). However, our results show that
including spatial information from those same reconstructions
leads to the opposite conclusion, such that paleoclimates now
provide much stronger constraints on the modern climate’s
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sensitivity to CO2 and projected warming. We note that our
21%"-century projections assume ice sheets will not be lost this
century. An important corollary to our results is that a major
shift in the modern warming pattern, e.g., caused by loss
of the West Antarctic Ice Sheet (24, 28, 53), could activate
positive feedbacks on longer timescales in the modern climate
similar to those that amplified global warming during the
Pliocene.

Materials and Methods

AGCM simulations. Following ref. (3), estimating paleoclimate A\
(Eq. 3) in AGCMs requires three simulations that differ only in
their SST/SIC boundary conditions while all other forcings are
constant at modern levels, similar to “amip-piForcing” simulations
(6, 56).

The three categories of AGCM simulations are: (a) Prein-
dustrial baseline, represented by the climatological mean of the
Late Holocene (04 ka) (16), which integrates proxy constraints
over a multi-millennial interval when Earth’s energy budget was
approximately in balance (57), and therefore estimates the mean
preindustrial climate; (b) 2xCOx, for which we use the multi-model
mean of quasi-equilibrium 2xCO3 simulations in LongRunMIP (32);
(¢) Pliocene, for which we use the various reconstructions described
in the main text (Fig. 1; Fig. S1-S3). In CAM4 and CAMS5, we
also test the 5*P and 95" percentiles of the plioDA ensemble (Fig.
S4); ensemble members are ranked by estimating Apjjo with CAM4
Green’s functions (45). SST/SIC boundary conditions are prepared
as described in ref. (3). We use plioDA’s SIC for ref. (13), as
no SIC is provided by the latter; this approach is supported by
similar ATpj;o in both reconstructions.

For each AGCM, we compute anomalies in simulations (b)
and (c) relative to (a). Simulations are 30 years, and we
analyze means over the final 25 years for CAM4 (2° resolution),
CAMB5.3 (2°), CAM6.0 (2°) (58), and HadGEM3-GC3.1-LL (N96,
135 km) (59), or the final 30 of 31 years for GFDL-AM4.0
(C96, 100 km) (60). Results are included in Tables S1-S2. As
described in ref. (3), we test sensitivity of AX to the 2xCOg
pattern by computing an alternate A/\ﬁlgyr, which uses the
150-year regression of abrupt COgz-forcing simulations in the
parent coupled models corresponding to each AGCM instead of
our A2xco,- Each coupled model produces a distinct warming
pattern over the 150-year period, thus A)\IAE}&yr samples uncertainty
in COgz-warming patterns. This test confirms our finding of
AN < 0 (Table S1-S2) and produces ECS constraints that agree
with our main result within 0.1°C (Table S3). We decompose
A into component feedbacks (Planck, lapse rate, water vapor,
surface albedo, shortwave cloud, and longwave cloud) using CAM5
radiative kernels (61), following ref. (44) (Fig. S5-S8).

Constraining modern climate sensitivity. Modern climate sensitivity
is the steady-state response of global-mean T" to doubling preindus-
trial CO2 concentrations, including only the feedbacks acting on an
approximate 150-year timescale, i.e., assuming fixed ice sheets and
vegetation. This metric, called “effective climate sensitivity” to
distinguish it from true equilibrium, is termed S in SW20 (2) and
hereafter. To infer S from Pliocene evidence, we build on SW20’s
equation of Pliocene energy balance by including the updates
described below. (S Percentile results are provided in Table S3.)

—AFco, (1 + fCH4) — AFNonGHG
ATpiio = Xoxcos _ ax (5]
+¢

(i) Our main update is incorporating Pliocene AX as A\ ~
N(p=—-0.37,0 =0.32) Wm~2K~!. We estimate u and o for
A\ by combining the spread across AGCMs and reconstructions
and using the approach described in detail in ref. (3) and briefly
here. Our central estimate treats each AGCM and each Pliocene
pattern as equally likely. To accomplish this equal weighting,
we assume the spread in A\ from pattern uncertainty is similar
between CAM4/CAMS5, in which we ran simulations with each

Cooper et al.

Pliocene pattern, and the other three models (CAM6, HadGEMS3,
and GFDL-AM4), in which we were only able to run simulations
with three Pliocene patterns due to computing resources. Note
that the assumption of similar spreads across models is supported
by the nearly identical 1o values for A\ from CAM4 and CAMb5
(Table S2). For CAM4 and CAMS5, we compute the differences
between each pattern’s AX and the plioDA best estimate of A\
we then add these differences to the plioDA best estimate of A
in CAM6, HadGEM3, and GFDL-AM4, thereby estimating values
of AM for the patterns that were not run in those models. The
result is a A\ distribution equally weighted across models and
patterns. Drawing from this distribution, we execute 10° iterations
of bootstrap resampling with n = 23 (representing the number of
actual AGCM simulations estimating AX) to assess confidence in
this estimate given the limited number of simulations informing the
distribution. The resulting 95% confidence interval on the mean
value of AN = —0.37 Wm~2 K1 is —0.50 to —0.24 W m~—2 K1,
and the 95% confidence interval on the 1o value of 0.32 W m—2 K—1
is 0.29 to 0.41 W m~2 K~1. See ref. (3) for further details.

(ii) Pliocene forcing is updated based on the recent estimate
of effective radiative forcing from non-GHG sources (AFNonGHG),
including ice sheets, vegetation, and land-sea distribution (24).
We assign AFNoncug ~ MN(1.7,1.0) W m~2, which assumes
a lo uncertainty that approximately maintains the original
SW20 uncertainty in total AFpj,. For reference, total AFpy;,
(numerator of Eq. 5) is 3.9 £ 1.2 (1o) W m~2, with GHG
forcing approximately 2.2 W m~2. We note there is substantial
uncertainty in the components of AFpj,, which merit further
study (18, 20, 42, 43, 62-65).

(iii) ATp)io is updated from 3.0 £ 1.0°C (1o) in SW20 to
plioDA’s constraint of ATpj, ~ N(4.1,0.6) °C (12), which is
supported by the estimate in ref. (13) of 3.9 £ 1.1°C (1o).

From SW20 (2), the remaining parameters in Equation 5 are:

CO; forcing of AFco, = AFaxco, X 1n(2[8(31§p211n)/1n(2)’ where

[CO2] ~ N(375,25) ppm and AFaxco, ~ N(4.0,0.3) W m~2;
a scaling factor for methane and N2O forcing, 1 + fopm,, with
fcH, ~ N(0.4,0.1); and a timescale transfer factor between quasi-
equilibrium and the 150-year S timescale, 1 4+ (, to account for
feedbacks becoming more positive at longer timescales (66), with
¢ ~ N(0.06,0.2) based on LongRunMIP (32). Finally, modern
climate sensitivity is S = —AFoxco,/A2xco, (2)-

We also use an alternate version of the A\ in (i) estimated by
comparing our paleoclimate AGCM simulations with feedbacks
from 150-year regression of abrupt COs-forcing simulations in
the parent coupled models of each AGCM. Each coupled model
produces a distinct warming pattern, thereby sampling uncertainty
in the pattern of warming from COq. With )‘1C5C())§,r representing the

regression feedback, we estimate Pliocene A)\ﬁ,}gyr = A?S(());r — APlio»

and we use the same approach in (i) to find Pliocene A)\ﬁlayr ~

N(p = —044,0 = 0.40) Wm~2 K~ Because A)\fggyr

represents a comparison with the 150-year regression feedback
rather than quasi-equilibrium simulations, the denominator of
Equation 5 becomes (Aaxco, — A)xfg(t)yr)/(l + ¢) when using

AAIASIF)yr instead of our standard AX. Note that the percentiles of

the final S distribution agree within 0.1°C when using A/\fsl(t)yr

(Table S3).

There are advantages to our formulation of the Pliocene energy
balance (Eq. 5) compared to SW20’s Equation 23. First, the
Pliocene is now consistent with the LGM, as AFNonqHG 1S now
added directly rather than estimated by multiplying AFco, by
a scale factor, 1 + frggs, representing Earth system sensitivity
(1, 28). Second, fgss conflates forcings and feedbacks, and
estimating fggg requires free-running coupled simulations that
have inaccurate warming patterns (24). Instead of using frss,
our Equation 5 separately includes effective radiative forcing,
AFNoncHG, from AGCM simulations with paleoenvironmental
boundary conditions informed by proxies for ice extent, vegetation,
and topography (24, 67), and paleoclimate pattern effects, from
AGCM simulations with SST/SIC patterns constrained by data
assimilation (3).

Climate sensitivity PDFs are summarized in Table S3. We
calculate likelihoods and PDFs for S using SW20’s Bayesian
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framework (2). This framework quantitatively combines our
findings with additional lines of evidence, and the methods can
be continually developed in ongoing efforts (68, 69). Our findings
would have the same directional impact on other assessments of
ECS and modern warming (11, 70).

In Fig. 4 and Table S3, we show S with and without
updates (i), (ii), and (iii). For the LGM evidence in Fig.
4b, we include updated ATygym ~ N(—6,1) °C and LGM

AX ~ N(=0.37,0.23) W m~2 K~1 (3). We also use AT02, in

Table S1 to estimate LGM A)\ﬁlgyr ~ N(p = —0.42,0 = 0.34)

W m~2 K~1. While SW20’s framework generally assumes lines
of evidence are independent, our estimates of Pliocene and LGM
pattern effects are interrelated. We use the same AGCMs, and
the reconstruction methods are partially overlapping. To account
for the relationship between Pliocene and LGM A\ estimates, we
identify pairs of estimates that use similar reconstruction methods
and the same AGCM (Table S4). From these pairs, we estimate the
Pearson correlation (r) and covariance for A\ to be r = 0.56 and
cov =0.0123 [W m~2 K~1]2. For A)\f‘gf)yr, we estimate r = 0.87
and cov = 0.0562 [W m~2 K~1]2. We account for the shared error
covariance by drawing correlated values for LGM and Pliocene A\
from bivariate normal distributions. However, the S constraints
are insensitive to the covariance, as our Full Update percentiles
(Table S3) change by less than 0.1°C if we assume zero covariance.
This result aligns with the dependence tests in SW20, which also
found relatively small impacts from codependencies (2).

‘We include results corresponding to SW20’s robustness test,
which assumes a uniform prior on S from 0 to 20°C instead of
the baseline prior of uniform A from —10 to 10 W m~2 K~1, in
Table S3. The robustness test yields a median of 3.1°C and 66%
range of 2.6 —3.8°C (90% CI: 2.3 —4.6°C). As for our main result
using the baseline prior, this represents a substantial narrowing
of uncertainty compared to the robust ranges in SW20. For
illustrative purposes, we also include posterior PDFs considering
only the Pliocene evidence and assuming the uniform-S prior. The
PDF from the Pliocene alone has a median of 3.8°C and 66% range
of 2.4 —7.2°C (90% CI: 1.9 — 12.9°C).

Projections of 215t-century warming. We analyze warming projec-
tions through 2100 under SSP2-4.5 (11) from the FalR model
v1.4.1, calibrated to match historical records as in IPCC AR6 but
with updated constraints through 2022 (55). From FalR, we have
a large ensemble of global-mean temperatures from 1850-2100, and
each member has an associated ECS. For each ensemble member,
we compute the mean warming over 2081-2100 relative to the 1850—
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1900 mean. We then resample the ensemble with replacement to
match the specified ECS distributions from SW20 and from our
updated paleoclimate-constrained ECS. This resampling produces
revised distributions of projected warming that are associated with
the specified ECS distributions (Fig. 4).
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A 2xCO3: LongRunMIP (Not Applicable) B plioDA (Tierney et al. 2025)

15
a
,,,,,,,,,,,,,,,,, 0.9 Gl
a5
77777 03
-0.3 §
"""""""""" -0.9 e
s
-1.5

E plioDA: Perturbed Cloud Prior

T DN

Fig. S1. Differences between the 2xCO- pattern of sea-surface temperature (SST) anomalies and Pliocene patterns of SST anomalies. Panels correspond to Figure 1
of Main Text; note that panel A is intentionally blank. Before taking the differences, each pattern’s local anomalies are divided by its global-mean SST anomaly to emphasize the
spatial patterns. Red regions indicate stronger relative amplification of warming in the LongRunMIP 2xCOx, pattern (1), while blue regions indicate stronger relative amplification
of Pliocene warming. See Figure S10 for zonal-mean SST anomalies and pattern differences.
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A 2xCO;: LongRunMIP B plioDA (Tierney et al. 2025)
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Fig. S2. Sea-ice concentration (SIC): LongRunMIP 2xCO- and Pliocene reconstructions. Panels correspond to Figure 1 of Main Text and show annual means. Note that
plioDA sea ice is used for the Annan et al. (2024) reconstruction.
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A 2xCO3: LongRunMIP B plioDA (Tierney et al. 2025)
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Fig. S3. Sea-ice concentration (SIC) anomalies: LongRunMIP 2xCO- and Pliocene reconstructions relative to preindustrial baseline. Panels correspond to Figure
1 of Main Text and show annual-mean differences relative to the preindustrial (Late Holocene) baseline (2). Note that plioDA sea ice is used for the Annan et al. (2024)
reconstruction.
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A plioDA: Ens. Member (5%) B plioDA: Ens. Member (95%)
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Fig. S4. 5™ and 95 percentile ensemble members from plioDA reconstruction (3). (A-B) Sea-surface temperature (SST) anomalies and (C-D) sea-ice concentration
(SIC) for ensemble members with the 5t percentile net feedback (more negative, stable climate) and 95 percentile net feedback (more positive, less stable climate). Ensemble
members are ranked using CAM4 Green’s functions (4) (Methods).
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A Feedback Decomposition
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Fig. S5. Kernel decomposition of radiative feedbacks (). Note that each legend applies to both panels: different sea-surface temperature and sea ice patterns are
distinguished by colors/borders, while the different atmospheric general circulation models (AGCMs) are distinguished by symbol shapes. (A) Decomposition of feedbacks using
radiative kernels (5) from CAM5 (6). (B) Pattern effects (AX = X2xco, — Aplio) for each component feedback in panel A. Planck represents the additional longwave
emission to space from a vertically uniform change in atmospheric and surface temperatures (e.g., 5, 7-9), LR+WV represents the lapse rate and water vapor feedbacks, and
LW and SW refer to longwave and shortwave radiation. Note that all kernel results exclude HadGEMS3 due to limited availability of model output.
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A Feedback Decomposition
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Fig. S6. Decomposition of radiative feedbacks (\) from direct model outputs for clear-sky radiation and cloud radiative effects (CRE). Note that each legend applies to
both panels: different sea-surface temperature and sea ice patterns are distinguished by colors/borders, while the different atmospheric general circulation models (AGCMs) are
distinguished by symbol shapes. Results are separated into longwave (LW) and shortwave (SW) radiation components. (A) Decomposition of feedbacks, and (B) decomposition
of pattern effects (AX = A2xC0Oy — APlio ). Small orange dots show the 5th and 95th percentile members of the plioDA ensemble (Methods).
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A 2xCO, B PlioDA c Annan et al. (2024)
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Fig. S7. Spatial pattern of local radiative feedbacks (). Local feedbacks are calculated as AV, /E, where AN is the local anomaly in top-of-atmosphere radiation, and
AT is the global-mean anomaly in near-surface air temperature. Multi-model mean, including CAM4, CAM5, CAM6, GFDL-AM4, and HadGEM3 from (A) LongRunMIP 2xCO4
(1), (B) plioDA (3), and (C) Annan et al. (10). CRE refers to cloud radiative effects, while SW cloud refers to shortwave cloud feedbacks estimated with radiative kernels (5, 6).
Note that kernel results (for SW cloud in bottom row) exclude HadGEMS due to limited availability of model output.

8 of 17 Cooper et al.: Paleoclimate pattern effects



Net Feedback (CAM5, Multiple Patterns)
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Fig. S8. Zonal mean of local net feedbacks () and pattern effects, A\ = A\axco, — Apiio- Local feedbacks are calculated as AN/E, where AN is the local
anomaly in top-of-atmosphere radiation, and AT is the global-mean anomaly in near-surface air temperature. (A) Feedbacks in CAMS5 using various patterns of sea-surface
temperature (SST) and sea ice, and (B) Pattern effects, AX = Aaxco, — APlio, in CAMS corresponding to panel A. (C-D) Repeat of panels A-B showing the subset of SST
and sea ice patterns used in all five models (CAM4, CAM5, CAM6, GFDL-AM4, and HadGEMS3); each line listed on the legends for panels C-D is shown multiple times in the
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figure to represent each of the five models.
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A Lapse Rate Feedback (CAM5, Multiple Patterns)
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Fig. S9. Zonal mean of local lapse rate feedbacks (\) and pattern effects, A\ = A2xC0, — APlio- Local feedbacks are calculated as AN/E7 where AN is the local
anomaly in top-of-atmosphere radiation, and AT is the global-mean anomaly in near-surface air temperature. (A) Feedbacks in CAM5 using various patterns of sea-surface
temperature (SST) and sea ice, and (B) Pattern effects, A\ = A2xco, — Aplio, in CAMS corresponding to panel A. (C-D) Repeat of panels A-B showing the subset of SST
and sea ice patterns used in all five models (CAM4, CAM5, CAM6, GFDL-AM4, and HadGEMS3); each line listed on the legends for panels C-D is shown multiple times in
the figure to represent each of the five models. Note that this figure shows kernel results for a subset of patterns and only four models (excludes HadGEM3) due to limited
availability of model output.
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Fig. S10. Zonal-mean patterns of temperature anomalies. (A) Normalized near-surface air 7" from various patterns and (B) differences versus LongRunMIP 2xCO4 pattern.
(C-D) Repeats panels A and B for SST. Note that A-B show AGCM output from CAM5, whereas C-D show input boundary conditions for all AGCMs.

Cooper et al.: Paleoclimate pattern effects 11 of 17



A Pliocene: All Forcings B Pliocene: Non-GHG Forcing

=
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ASST | ASST
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Fig. S11. Sea-surface temperature (SST) response to Pliocene forcings in CESM2.1 from ref. (11). (A-C) Patterns of SST anomalies (normalized by global-mean
anomalies) relative to preindustrial control from (A) all Pliocene forcings, (B) Non-GHG forcings including ice sheets, vegetation, topography, and bathymetry, and (C) CO2
concentration of 400 ppm, which accounts for both CO2 and methane forcing. (D) Difference between SST response to CO5 versus non-GHG forcing, represented as panel C
minus panel B; red regions indicate stronger relative amplification of warming from CO2, while blue regions indicate stronger relative amplification from non-GHG forcings. In all
panels, regions of preindustrial sea ice are masked in light gray. The CESM2 simulations follow the PlioMIP2 protocol (12, 13).
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Table S1. All units are W m—2 K1, Pliocene pattern effects, A\ = A2xCO5 — APlios from three patterns of reconstructed Pliocene SST and sea
ice in various AGCMs (CAM4 coupled to CLM4.5, CAM5.3 coupled to CLM5.0, CAM6.0 coupled to CLM5.0, GFDL-AM4.0, and HadGEM3-GC3.1-

LL). Alternate values for Pliocene pattern effects, A)\ﬁ,}gyr = )\%%;r — Aplio, are shown using 150-yr regression of abrupt-4xCO- simulations

(abrupt-2xCO-, is used for CESM2.1-CAM6.0 to avoid issues with the ice nucleation scheme and cloud microphysics timestep (14, 15) that
impact the feedback diagnosed from the 4xCO- simulation) from coupled models corresponding to each AGCM (16).

Model Pattern AN Aplio Maxco,  ANE L ATRR
CAM4 plioDA -0.57  -0.82 -1.39 -0.41 -1.23
CAM4 plioDA: PlioMIP2 Prior ~ -0.18 -1.21 -1.39 -0.02 -1.23
CAM4 Annan24 -026  -1.13 -1.39 -0.10 -1.23
CAM5 plioDA -0.48  -0.48 -0.96 -0.67 -1.15
CAM5 plioDA: PlioMIP2 Prior ~ -0.10  -0.86 -0.96 -0.29 -1.15
CAM5 Annan24 -0.24  -0.72 -0.96 -0.43 -1.15
CAM®6 plioDA -0.69  -0.13 -0.83 -1.08 -1.21
CAM6 plioDA: PlioMIP2 Prior ~ -0.17  -0.65 -0.83 -0.56 -1.21
CAM®6 Annan24 -0.43  -0.39 -0.83 -0.82 -1.21
GFDL-AM4  plioDA -0.44  -0.49 -0.93 -0.37 -0.86
GFDL-AM4  plioDA: PlioMIP2 Prior  -0.12  -0.81 -0.93 -0.05 -0.86
GFDL-AM4  Annan24 -0.28  -0.65 -0.93 -0.21 -0.86
HadGEM3 plioDA -0.20 -0.44 -0.64 -0.19 -0.63
HadGEM3 plioDA: PlioMIP2 Prior ~ -0.02  -0.62 -0.64 -0.01 -0.63
HadGEM3 Annan24 -0.24 -0.41 -0.64 -0.22 -0.63
CAM4 mean -0.34  -1.05 -1.39 -0.18 -1.23
CAM5 mean -0.27  -0.68 -0.96 -0.47 -1.15
CAM6 mean -0.43  -0.39 -0.83 -0.82 -1.21
GFDL-AM4  mean -0.28  -0.65 -0.93 -0.21 -0.86
HadGEM3 mean -0.15  -0.49 -0.64 -0.14 -0.63
mean Annan24 -0.29 -0.66 -0.95 -0.36 -1.02
mean plioDA -0.48  -0.47 -0.95 -0.54 -1.02
mean plioDA: PlioMIP2 Prior ~ -0.12 -0.83 -0.95 -0.18 -1.02
mean mean -0.30 -0.65 -0.95 -0.36 -1.02
lo lo 0.19 0.29 0.31
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Table S2. Pliocene pattern effects, A\ = \2xco, — Apiio, from various patterns of reconstructed Pliocene SST and sea ice in CAM4 and CAMS.
Global-mean anomalies for SST, near-surface air temperature (T), and top-of-atmosphere radiative imbalance (N) are shown for reference.

Alternate values for Pliocene pattern effects, AXl“slgyr = A%%ir — Aplio, are shown using 150-yr regression feedbacks (Table S1).
Units Wm™2K~!  WmT2K~! K K wWm™2? wm2k~!
Model ~ Pattern AX A ASST AT AN ANME
CAM4 plioDA -0.57 -0.82 3.00 3.90 -3.20 -0.41
CAM4 plioDA: PlioVar Data -0.47 -0.92 289 3.78 -3.48 -0.31
CAM4 plioDA: PlioMIP2 Prior -0.18 -1.21 294 3.86 -4.67 -0.02
CAM4 plioDA: Cloud Prior -0.63 -0.76 2.83 3.68 -2.79 -0.47
CAM4 plioDA: 5% -0.01 -1.39 3.96 4.88 -6.77 0.16
CAM4 plioDA: 95% -1.01 -0.38 3.29 4.02 -1.55 -0.85
CAM4  Annan24 -0.26 -1.13 282 3.72 -4.21 -0.10
CAM4 mean -0.45 -0.94 3.10 3.98 -3.81 -0.29
CAM4 1o 0.33 0.33 0.41 0.41 1.65 0.33
CAM4  2xCO2: LongRunMIP -1.39 235 3.16 -4.40
Model  Pattern AX X ASST AT AN ANYE
CAM5  plioDA -0.48 -0.48 3.00 3.98 -1.90 -0.67
CAM5  plioDA: PlioVar Data -0.43 -0.53 2.89 3.85 -2.02 -0.62
CAM5  plioDA: PlioMIP2 Prior -0.10 -0.86 294 3.96 -3.40 -0.29
CAM5 plioDA: Cloud Prior -0.56 -0.39 283 3.75 -1.48 -0.76
CAM5  plioDA: 5% 0.13 -1.09 3.96 4.99 -5.42 -0.06
CAM5  plioDA: 95% -0.80 -0.16 3.29 4.10 -0.65 -0.99
CAM5  Annan24 -0.24 -0.72 282 3.78 -2.71 -0.43
CAM5 mean -0.35 -0.60 3.10 4.06 -2.51 -0.55
CAM5 1o 0.31 0.31 0.41 0.43 1.55 0.31
CAM5  2xCO2: LongRunMIP -0.96 235 3.21 -3.07
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Table S3. Posterior distributions of climate sensitivity (S). “Combined Evidence” assumes the Baseline Prior, A ~ Unif(—10,10) Wm~2 K~1,
and includes Process Understanding, Historical Evidence, and Paleoclimate Evidence from the Last Glacial Maximum (LGM) and Pliocene.
The Robust Range also combines lines of evidence but assumes a Uniform .S Prior, S ~ Unif(0, 20) K (17). “Pliocene Only” considers only
Pliocene evidence and assumes the Uniform S Prior. All uncertainties shown are 1o values. Table structure is comparable to Table 10 of
Sherwood, Webb et al. (2020).

Combined Evidence (Baseline Prior) 5th  17th  50th 83rd 95th Mean ATpiio AFEYo o ATiaum
SW20: Original 23 2.6 3.1 3.9 4.7 32 3.0+1.0 fess 541

+ Update ATranr 23 27 32 41 50 34 30+10 frmss 641

+ Update ATpyio 2.6 29 3.6 4.6 5.6 38 41+06 fess 6+ 1

+ Update AF]’\;Z;’GHG 2.5 2.8 3.4 4.3 5.2 36 41+£06 1.7+1.0 6+ 1
Include only LGM A\ 2.3 2.6 3.0 3.7 4.4 3.2 414+0.6 1.7+1.0 -6+ 1
Include only Pliocene A\ 2.3 2.6 3.1 3.9 4.7 3.3 41 4+0.6 1.7+1.0 -6+ 1
Full Update incl. Paleo A\ 2.1 2.4 2.8 3.4 4.0 29 41406 1.7+£1.0 -6+ 1
Alt. Update incl. Paleo ANALL 21 24 28 35 41 30 41406 17+1.0 -6+ 1
Combined, Robust Range (Unif. .S Prior) 5th  17th 50th 83rd 95th Mean ATpiio AFEYo. o ATigum
SW20: Original Robust Range (Unif. .S) 2.4 2.8 3.5 4.5 5.7 37 380+£10 fess 5+1

+ Update AT, AFFlio . . (Unif. 5) 26 30 38 49 62 40 41406 17+10 6+ 1
Full Update incl. Paleo AX (Unif. .S) 2.3 2.6 3.1 3.8 4.6 32 41+£06 1.7+1.0 6+ 1
Alt. Update incl. Paleo A/\fsl(t) . (Unif. S) 2.3 2.6 3.1 3.9 4.8 3.3 41 4+0.6 1.74+1.0 -6+ 1
Pliocene Only (Unif. S Prior) 5th  17th 50th  83rd 95th Mean ATpi, AFEYe. o

SW20: Original 1.6 2.4 4.0 6.8 10.1 4.7 3.0+£1.0 fESs

+ Update ATpyio 2.9 3.8 5.6 8.6 12.3 6.3 3.0£1.0 fESs

+ Update AFELio 25 32 47 74 112 54 41406 17+10

Include Pliocene A\ 1.9 2.4 3.8 7.2 12.9 5.0 41 +0.6 1.7£1.0

Alt. Pliocene AMME | 18 24 38 83 148 53 41406 17410

Units in °C; AF units in Wm™2.
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Table S4. Paired estimates of Pliocene and LGM pattern effects, which use similar methods for data assimilation and the same AGCMs. The
pairs are used to estimate the Pearson correlation and covariance between estimates of Pliocene and LGM pattern effects (18). For the standard
AX,r = 0.56 and cov = 0.0123 [W m~2 K~ ]2. For AA}MY |, 7 = 0.87 and cov = 0.0562 [W m~2 K~ |>. Table units are W m~2 K~'. LGM

results use updated CESM2.1 A2}t in Table S1.

150yr
AGCM Plio Pattern LGM Pattern ~ Adpiio  Adpam  AMAEIS0 ANAlLLS0
CAM4 plioDA LGMR -0.57 -0.45 -0.41 -0.21
CAM5 plioDA LGMR -0.48 -0.31 -0.67 -0.41
CAM®6 plioDA LGMR -0.69 -0.63 -1.08 -1.02
AM4 plioDA LGMR -0.44 -0.33 -0.37 -0.27
HadGEM3  plioDA LGMR -0.20 -0.27 -0.19 -0.29
CAM4 Annan Annan -0.57 -0.29 -0.10 -0.06
CAM5 Annan Annan -0.48 -0.09 -0.43 -0.18
CAM4 plioDA: Cloud Prior ~ LGMR -0.63 -0.45 -0.47 -0.21
CAM5 plioDA: Cloud Prior  LGMR -0.56 -0.31 -0.76 -0.41
CAM4 plioDA: Cloud Prior  IgmDA -0.63 -0.69 -0.47 -0.45
CAM5 plioDA: Cloud Prior  IgmDA -0.56 -0.51 -0.76 -0.61
CAM4 plioDA IgmDA -0.57 -0.69 -0.41 -0.45
CAM5 plioDA IgmDA -0.48 -0.51 -0.67 -0.61
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