106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

124

Paleoclimate pattern effects help constrain climate sensitivity and 21st-century warming

V. T. Cooper^{a,1}, K. C. Armour^{a,b}, G. J. Hakim^a, J. E. Tierney^c, N. J. Burls^d, C. Proistosescu^e, T. Andrews^{f,g}, W. Dong^{h,i}, M. T. Dvorak^b, R. Feng^j, M. B. Osman^k, and Y. Dong¹

This manuscript was compiled on May 6, 2025

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Paleoclimates provide examples of past climate change that inform estimates of modern warming from greenhouse-gas emissions, known as Earth's climate sensitivity. However, differences between past and present climate change must be accounted for when inferring climate sensitivity from paleoclimate evidence. The closest paleoclimate analog to nearterm warming from greenhouse-gas emissions is the Pliocene (5.3-2.6 Ma), a warm epoch with atmospheric CO_2 concentrations similar to today. Recent reconstructions indicate the Pliocene was 1°C warmer than previously thought, implying higher climate sensitivity, which is also supported by recent reconstructions showing more cooling from reduced CO_2 at the Last Glacial Maximum (LGM; 19-23 thousand years ago). However, large-scale patterns of paleoclimate temperature change differ strongly from modern projections. Climate feedbacks and sensitivity depend on temperature patterns, and such "pattern effects" must be accounted for when using paleoclimates to constrain modern climate sensitivity. Here we combine dataassimilation reconstructions with atmospheric general circulation models to show Earth's climate is more sensitive to Pliocene forcing than modern CO_2 forcing. Pliocene ice sheets, topography, and vegetation alter patterns of ocean warming and excite destabilizing cloud feedbacks, and LGM feedbacks are similarly amplified by the North American ice sheets. Accounting for paleoclimate pattern effects produces a best estimate (median) for modern climate sensitivity of 2.8°C and 66% confidence interval of 2.4-3.4°C (90% CI: 2.1-4.0°C), substantially reducing uncertainty in projections of 21st-century warming.

climate dynamics | climate sensitivity | paleoclimate | cloud feedbacks | climate projections

33 he paleoclimate record constitutes a series of natural experiments with fundamental insights into Earth's climate sensitivity. Using paleoclimate 34 evidence to constrain the modern sensitivity to rising greenhouse-gas (GHG) 35 concentrations requires accounting for differences in both climate forcings and 36 feedbacks between past and modern climates (1-3). A key driver of such feedback 37 differences across past climates is variation in the spatial pattern of sea-surface 38 temperature, i.e., "paleoclimate pattern effects" (3). Pattern effects are variations 39 in climate sensitivity and feedbacks that depend on spatial patterns of temperature 40 41 change (e.g., 4-8), and they arise in paleoclimates when non-GHG forcings (such as ice sheets, topography, and vegetation) affect large-scale temperature patterns. 42 Paleoclimate pattern effects can have major impacts on estimates of modern climate 43 sensitivity if non- CO_2 forcings strongly influence the temperature pattern, thereby 44 45 producing climate feedbacks that differ from those governing modern warming from 46 GHG forcing (3).

47 The Pliocene (5.3–2.6 Ma) is the closest analog to near-term warming from GHG 48 emissions (9). Its mid-Piacenzian warm period (3.3–3.0 Ma), hereafter "Pliocene," is the most recent epoch with atmospheric CO_2 levels (near 400 ppm) similar to 49 today (10). Pliocene warming thus provides an important constraint on the modern 50 equilibrium climate sensitivity (ECS), the steady-state response of global-mean 51 near-surface air temperature to a doubling of atmospheric CO_2 from preindustrial 52 levels (2, 11). Previous assessments of Pliocene proxies report approximately $3^{\circ}C$ 53 54 of global warming from preindustrial conditions and an upper bound of $4^{\circ}C(2, 11)$. However, recent reconstructions find a much warmer Pliocene with central estimates 55 56 of $4^{\circ}C$ (12, 13). This revision to Pliocene warming suggests much higher ECS of 57 $4.8^{\circ}C$ (12) and increased likelihood of the worst-case projections of 21^{st} -century warming. Notably, high ECS of 4.8° C has also been reported (14) based on recent 58 reconstructions (15-17) showing colder global-mean temperatures at the Last Glacial 59 Maximum (LGM; 19-23 ka). But these globally resolved reconstructions tell us more 60 61 than global means—they capture the spatial pattern of paleoclimate temperature change, and this spatial information is essential to constraining modern ECS. 62

Significance Statement

The uncertain upper bound of climate sensitivity determines the worst-case projections of global warming. Recent paleoclimate reconstructions suggest high climate sensitivity of $5^{\circ}C$ per CO_2 doubling. However, by analyzing the spatial patterns of Pliocene warmingthe closest analog to near-term warming-we show that past warming was amplified by ice sheets, topography, and vegetation through impacts on regional ocean warming and clouds. Similarly, cooling at the Last Glacial Maximum was amplified by regional ocean and cloud responses to massive ice sheets. Because these amplifying feedbacks are associated with non- CO_2 forcings unique to paleoclimates, the expected modern warming from doubling CO₂ is constrained to 2.1-4.0°C (90% confidence). This indicates a major update to the upper bound on climate sensitivity and 21st-century warming projections.

Author affiliations: ^a Dept. of Atmospheric and Climate Science. University of Washington, Seattle, WA, USA; ^bSchool of Oceanography, University of Washington, Seattle, WA, USA; ^cDept. of Geosciences, University of Arizona, Tucson, AZ USA; ^dDept. of Atmospheric, Oceanic and Earth Sciences, George Mason University, Fairfax, VA, USA; e Dept. of Climate Meteorology, and Atmospheric Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, USA; ^fMet Office Hadley Centre, Exeter, UK: g School of Earth and Environment. University of Leeds, Leeds, UK; hCooperative Programs for the Advancement of Earth System Science, University Corporation for Atmospheric Research, Boulder, CO, USA ¹NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, NJ USA; ^j Dept. of Geosciences, University of Connecticut, Storrs. CT, USA; ^k Dept. of Geography, The University of Cambridge, Cambridge, UK: ¹Dept. of Atmospheric and Oceanic Sciences. University of California Los Angeles, Los Angeles, CA, USA

The authors declare no competing interests.

¹²³ ¹To whom correspondence should be addressed. E-mail vcooperuw.edu

To infer modern ECS from Pliocene evidence, we must 125 consider differences in both forcing and feedbacks between the 126 Pliocene and present climate. The Pliocene has both elevated 127 GHG levels (10, 18) as well as additional forcing from (i) 128 reduced ice sheets over West Antarctica and Greenland, (ii) 129 increased vegetation, especially over northern high latitudes, 130 and (iii) changes in land-sea distribution (1, 2, 19, 20). 131 Previous work found that the Pliocene's global-mean warming 132 is mostly attributable to CO_2 (21–23). However, modeling 133 studies show that the non-CO₂ forcings drive distinct climate 134 responses especially at regional scales (21, 23-28), and that 135 Pliocene temperature patterns may differ substantially from 136 those in response to modern CO_2 forcing (24), thereby 137 producing different climate feedbacks. Accounting for such 138 pattern effects in cold-period evidence from the LGM leads 139 to stronger constraints on modern ECS (3). The key question 140 addressed here is: would accounting for Pliocene pattern 141 effects also strengthen constraints on modern ECS? 142

We quantify Pliocene pattern effects by synthesizing proxy 143 data with climate models, and we use these results to revise 144 estimates of modern ECS and 21st-century warming. Spatially 145 complete reconstructions of the Pliocene (12, 13) from paleo-146 climate data assimilation (15, 16, 29) are used in numerical 147 simulations with five atmospheric general circulation models 148 (AGCMs) to quantify relationships between temperature 149 patterns and climate feedbacks (e.g., 3, 5). We analyze 150 differences between feedbacks in the Pliocene compared to 151 modern warming from CO_2 . We then combine our Pliocene 152 results with an investigation of the LGM (3), and we quantify 153 the impacts of the feedback differences on estimates of modern 154 ECS and projections of 21st-century warming. 155

157 Paleoclimate pattern effects and modern ECS

156

161

162

175

176

185

186

¹⁵⁸ Modern ECS, climate feedbacks, and paleoclimate pattern effects are related through the global-mean energy balance,

$$\Delta N = \Delta F + \lambda \Delta T, \qquad [1]$$

163 where ΔN is the change in top-of-atmosphere radiative 164 balance; ΔF is the "effective" radiative forcing, i.e., the 165 change in net downward radiative flux after atmospheric 166 adjustments to imposed perturbations, excluding radiative 167 responses to changing surface temperature (11); λ is the net 168 climate feedback (negative for stable climates); and ΔT is the 169 change in near-surface air temperature. All values are global 170 means, and differences (Δ) are relative to the preindustrial 171 baseline. When the forcing is a doubling of preindustrial CO_2 172 concentrations $(2xCO_2)$, and the climate reaches equilibrium 173 $(\Delta N = 0)$, the resulting ΔT is the modern ECS: 174

$$ECS = -\Delta F_{2xCO_2} / \lambda_{2xCO_2}, \qquad [2]$$

[3]

where ΔF_{2xCO_2} is the effective radiative forcing and λ_{2xCO_2} is the net feedback from modern CO₂ doubling. Increasingly negative values of λ indicate more-stable climates and lower ECS.

Paleoclimate pattern effects $(\Delta \lambda)$ are quantified as the difference between λ_{2xCO_2} and a paleoclimate feedback, e.g., the Pliocene feedback (λ_{Plio}) , due to differences in the spatial patterns of warming:

$$\Delta \lambda = \lambda_{2 \mathrm{xCO}_2} - \lambda_{\mathrm{Plio}}.$$

 $\Delta\lambda$ also can vary with global-mean temperature (e.g., 2, 3, 30). However, this temperature dependence can be omitted for the Pliocene due to similar levels of global warming from Pliocene and 2xCO₂ forcings (2) and is relatively small for LGM levels of global cooling (3, 31).

Modern ECS and λ_{2xCO_2} can be constrained by estimating λ_{Plio} and $\Delta\lambda$, then combining Equations 2 and 3:

$$ECS = -\Delta F_{2xCO_2} / (\lambda_{Plio} + \Delta \lambda).$$
[4]

 $\Delta\lambda$ depends on spatial patterns of Pliocene temperature anomalies, for which we use state-of-the-art reconstructions from data assimilation (12, 13) as boundary conditions for simulations using five AGCMs, as described in the following section.

Pliocene pattern effects from data assimilation

Patterns of Pliocene sea-surface temperature. In Fig. 1, we compare the projected sea-surface temperature (SST) anomalies from modern 2xCO₂, based on the multi-model mean of quasi-equilibrium simulations in LongRunMIP (32), with the various Pliocene reconstructions from "plioDA" (12) and ref. (13) that we use to quantify Pliocene pattern effects. The Pliocene patterns include the best estimates from plioDA (12) and ref. (13), as well as alternate plioDA reconstructions that test structural uncertainty and endmembers of the plioDA ensemble (Fig. 1; Fig. S1-S4) (Methods). The reconstructions use paleoclimate data assimilation (15, 16, 29), which optimally combines dynamical constraints from model "priors" with proxy data. Data assimilation results depend on specific aspects of the methods. model priors (33), and observations.

To address reconstruction uncertainty, we analyze pattern effects across a wide range of possible Pliocene temperature patterns that use different assimilation methods, model priors, and subsets of proxy data. Focusing on sensitivity to the model prior, the "PlioMIP2 Prior" version of plioDA uses 14 PlioMIP2 simulations (34) to inform its prior. The "Perturbed Cloud Prior" uses 21 simulations that are designed to capture Pliocene temperature gradients by substantially altering models' cloud physics (35–37). Focusing on sensitivity to the proxy network, the "PlioVar Data" version restricts data to the KM5c interglacial (38), and we also test endmembers of the plioDA ensemble (Fig. S4) (Methods). Ref. (13) and plioDA (12) have partially overlapping proxy networks, model priors (both best estimates include simulations from PlioMIP2), and assimilation methods (ensemble Kalman filter); however, there are substantial differences between the two reconstruction efforts in terms of the proxies included, model priors, and methods (e.g., forward modeling of proxies in plioDA) that lead to differences in their results (12) (Fig. 1b.f).

Despite the substantial uncertainty in the details of the Pliocene SST patterns shown in Fig. 1, the reconstructions all have two common features that distinguish the Pliocene from the modern response to $2xCO_2$: the Pliocene has amplified SST warming in the Southern Ocean and the North Atlantic Ocean (Fig. 1; Fig. S1). The distinct Pliocene warming pattern is driven by the distinct spatial pattern of Pliocene forcing (Fig. 1h) (24), which arises from the Pliocene's non-CO₂ forcings (changes in ice sheets, topography, and vegetation) and differs substantially from

241

242

243

244

245

246

247

Fig. 1. Patterns of sea-surface temperature (SST) anomalies and effective radiative forcing (ERF). (A) Multi-model mean of modern SST response to $2xCO_2$ in quasi-equilibrium simulations from LongRunMIP (32). (B–F) Data-assimilation reconstructions from: (B) plioDA best estimate (12); alternate plioDA using (C) only the PlioVar proxy data representing the KM5c interglacial, (D) only the PlioMIP2 prior, or (E) only the perturbed-cloud prior; and (F) best estimate from ref. (13). ERF from (G) modern $2xCO_2$ and (H) Pliocene total forcing, including greenhouse gases, reduced Greenland and Antarctic ice sheets, sea level, and vegetation (24). All panels show annual-mean anomalies, and local values are divided by global means. Pliocene SSTs are infilled to modern coastlines.

the relatively uniform forcing produced by CO₂ alone (Fig. 1g). The connection between the non-CO₂ Pliocene forcings and the SST patterns they produce has been demonstrated in coupled climate models (24), which we return to in the Discussion.

Quantifying feedbacks and pattern effects. We estimate the net climate feedback, λ , for each warming pattern in Fig. 1 using AGCM simulations with prescribed SST and sea-ice concentration (SIC) (Methods). Following ref. (3), we begin with a control simulation using the preindustrial "baseline" pattern (16). We repeat the AGCM simulations, changing only the SST and SIC to the $2\mathrm{xCO}_2$ pattern from LongRunMIP (Fig. 1a) and to each of the Pliocene patterns (Fig. 1b-e; SIC in Fig. S2–S4). We hold the forcings constant

at modern levels across all simulations to isolate the radiative response to changes in surface temperature (Methods). For each simulation, we calculate ΔN and ΔT relative to the preindustrial baseline, and the net feedback is $\lambda = \Delta N/\Delta T$ from Eq. 1 with $\Delta F = 0$.

In Fig. 2, we compare λ_{2xCO_2} with λ_{Plio} and quantify Pliocene pattern effects ($\Delta\lambda$). In all five AGCMs, λ_{Plio} is more positive (destabilizing) than λ_{2xCO_2} , which means that the climate system is more sensitive to Pliocene forcing than it is to modern $2xCO_2$ forcing. We test whether this result is robust despite uncertainties in atmospheric model physics and Pliocene reconstructions by running the simulations in CAM4, CAM5, CAM6, GFDL-AM4, and HadGEM3-GC3.1-LL, and by testing three different Pliocene patterns (Fig 1B,D,F) in all five AGCMs. We test additional Pliocene

Fig. 2. Net climate feedbacks (λ) and Pliocene pattern effect ($\Delta\lambda$). Note that each legend applies to both panels; different atmospheric general circulation models (AGCMs) are denoted by symbols, and different Pliocene warming patterns are denoted by colors and borders. (a) Scatter plot of $\lambda_{\rm 2xCO_2}$ versus $\lambda_{\rm Plio}$ for each AGCM and Pliocene pattern, with $\lambda_{2xCO_2} = \lambda_{Plio}$ shown as solid line. (b) Pliocene pattern effect, $\Delta \lambda = \lambda_{2xCO_2} - \lambda_{Plio}$, using values in panel **a**. Error bars for plioDA represent endmembers of the ensemble reconstruction (Methods).

patterns, including the 5th and 95th percentiles of the plioDA ensemble (Fig. S4), in CAM4 and CAM5 (Methods). Despite the uncertainties in Pliocene SST patterns and atmospheric model physics, there is a clear Pliocene pattern effect with $\Delta \lambda < 0$ (Fig. 2b), albeit with uncertain magnitude.

In summary, the Pliocene warming pattern excites more positive (destabilizing) climate feedbacks compared to the $2xCO_2$ warming pattern ($\lambda_{Plio} > \lambda_{2xCO_2}$), i.e., the Pliocene pattern effect is negative ($\Delta \lambda < 0$). As will be shown below, the negative pattern effect indicates that positive feedbacks amplifying Pliocene warming do not play an equivalent role in the modern climate's response to greenhouse-gas forcing. Accounting for this negative Pliocene pattern effect would lead to lower estimates of modern ECS and future warming (Eq. 4) (3).

Discussion

Mechanisms responsible for Pliocene pattern effects. To diagnose the mechanisms contributing to more-positive climate feedbacks in the Pliocene, we first use radiative kernels to assess each component feedback within the AGCM simulations (Methods) (39). We find that the cloud feedback (λ_{cloud}) , namely the shortwave component associated with low clouds, is the dominant driver of $\lambda_{\text{Plio}} > \lambda_{2\text{xCO}_2}$ (Fig. S5–S6). The combined lapse-rate and water-vapor feedbacks make an additional contribution to more-positive λ_{Plio} (Fig. S5). 434

Next, we inspect the spatial distribution of the Pliocene's more-positive cloud feedbacks to understand their source.

435

436

437

439

440

441

442

443

444

445

446

447

448

449

450

451

455

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

In Fig. 3, we compare the spatial patterns of λ_{cloud} in the Pliocene versus $2xCO_2$. The most pronounced differences 438 are over the Southern Ocean (Indian sector) and the North Atlantic. The zonal mean of $\Delta \lambda_{\text{cloud}}$ (Fig. 3a) illustrates that the Pliocene's extratropical cloud feedbacks are responsible for $\lambda_{\text{Plio}} > \lambda_{2\text{xCO}_2}$, supported by extratropical lapse-rate feedbacks (Fig. S9). Comparing Fig. 3's λ_{cloud} with Fig. 1's SST patterns (zonal mean SST in Fig. S10), we see that the regions with amplified Pliocene SST anomalies are approximately collocated with the amplified Pliocene λ_{cloud} . That is, amplified SST anomalies in the extratropics are responsible for more-positive feedbacks in the Pliocene, which is consistent with a similar analysis of the Last Glacial Maximum (3). When SST warming is strongly amplified in the extratropics compared to the SST warming in tropical regions of atmospheric deep convection (e.g., the west Pacific 452 warm pool), tropospheric stability is decreased and low-cloud 453 cover is reduced, which is a positive feedback on the initial 454 warming (3, 7, 40). Past studies of the Pliocene emphasize the zonal SST in the tropical Pacific and meridional temperature 456 gradients (12, 22, 41-45), while we find that the amplification of warming in the North Atlantic and especially the Southern Ocean are the dominant features that distinguish Pliocene feedbacks from the modern response to $2xCO_2$.

The final and essential aspect of the mechanism is that amplified warming in the Southern Ocean and North Atlantic is due to non- CO_2 forcings (ice sheets, vegetation, and topography), as shown in Fig. S11. This attribution has been illustrated by simulations in coupled climate models that separate the SST response to Pliocene CO_2 versus non-CO₂ forcings (e.g., 21, 23, 24, 34). Pliocene warming in the North Atlantic is amplified by the closure of ocean gateways (Bering Strait and Canadian Archipelago) through changes in the Atlantic Meridional Overturning Circulation (AMOC) (25), and it is further amplified by reductions in ice sheets (27). Amplified warming in the Southern Ocean is associated with the reduced Antarctic Ice Sheet and topography through changes in ocean circulation (24, 46). While amplified warming of the Southern Ocean appears in all reconstructions (Fig. 1), its magnitude is uncertain due to sparse proxy data, and this uncertainty makes a large contribution to our spread in $\Delta\lambda$ (Fig. S8–S10). Compared to coupled models, both the North Atlantic and Southern Ocean SST features are even more pronounced in data-assimilation reconstructions constrained by paleoclimate proxies (Fig. 1) (12, 13). Thus coupled models are essential for illustrating mechanisms of paleoclimate pattern effects, and incorporating observational constraints through data assimilation is key to producing reliable SST patterns and constraining $\Delta \lambda$.

While our comparison of the Pliocene versus modern $2xCO_2$ uses the LongRunMIP pattern (32), we note that there is substantial uncertainty in the projected SST pattern from 2xCO₂. However, because Pliocene and LGM pattern effects arise from how non-CO₂ forcings shape paleoclimate temperature patterns, we expect conclusions about $\Delta \lambda$ to be relatively insensitive to uncertainty in the SST pattern from CO_2 forcing. Furthermore, ref. (47) finds that the feedback uncertainty from CO₂-forced SST patterns is only 10% of the total feedback spread across different models. That result

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

Fig. 3. Cloud feedbacks from modern CO₂ forcing versus Pliocene warming. (a) Zonal means of panels **b**, **c**, and their difference, $\Delta \lambda_{cloud}$; negative values of $\Delta \lambda_{cloud}$ contribute to the negative Pliocene pattern effect. (**b–c**) Spatial distributions of cloud feedbacks, $\lambda_{cloud} = \Delta N_{local}/\overline{\Delta T}$, where ΔN_{local} is the local anomaly in top-of-atmosphere radiation attributable to cloud feedbacks (estimated with radiative kernels), and $\overline{\Delta T}$ is the global-mean T anomaly. Multi-model mean of (**b**) λ_{cloud} using the LongRunMIP 2xCO₂ pattern and (**c**) multi-pattern mean λ_{cloud} from Pliocene patterns in Fig. 1b,d,f (plioDA best estimate (12), alternate plioDA using only the PlioMIP2 prior, and ref. (13) best estimate; these patterns were tested in all atmosphere models). All panels show multi-model means across atmosphere models.

⁵¹⁵ emphasizes the importance of using multiple atmospheric ⁵¹⁶ models to quantify $\Delta\lambda$ and that the feedback spread from ⁵¹⁷ CO₂-forced patterns is small compared to that arising from ⁵¹⁸ the Pliocene reconstructions. We test whether results are ⁵¹⁹ sensitive to the 2xCO₂ pattern and find this uncertainty does ⁵²⁰ not affect the conclusions (Methods).

514

534

In summary, non-CO₂ forcings from ice sheets, topography, 521 and vegetation altered the spatial pattern of ocean warming, 522 in turn producing positive cloud feedbacks in the extratropics 523 that strongly amplified global warming during the Pliocene 524 (Fig. 3). Because of these amplifying feedbacks, more of 525 the Pliocene warming was caused by non- CO_2 forcings than 526 previously thought, meaning that less of the warming is 527 attributable to elevated CO_2 alone. Since these amplifying 528 feedbacks from non-CO₂ forcing do not play a role in 529 the modern response to $2xCO_2$ alone, we now show that 530 accounting for the Pliocene pattern effect lowers estimates 531 of modern ECS and reduces the likelihood of worst-case 532 projections for 21st-century warming. 533

Modern climate sensitivity and 21st-century warming. To 535 constrain modern ECS with paleoclimate evidence, we first 536 infer climate feedbacks during a paleoclimate period from 537 changes in Earth's energy budget, and then we account for 538 differences relative to the modern response to $2xCO_2$ (1–3). 539 Measures of climate sensitivity depend on the timescale of 540 interest, and we follow ref. (2), hereafter "SW20," in focusing 541 on the 150-year timescale of "effective" climate sensitivity 542 (S), and in treating slow paleoclimate feedbacks, e.g., ice 543 sheets, as radiative forcings (1). 544

First, we estimate λ_{Plio} by applying Equation 1 to the 545 Pliocene (Methods). We update ΔT_{Plio} from SW20's values 546 of 3.0 ± 1.0 °C (1 σ) to plioDA's result of $\Delta T_{Plio} = 4.1 \pm$ 547 0.6 °C (1 σ). We also update the non-GHG (greenhouse 548 gas) effective radiative forcing to ΔF_{NonGHG} = 1.7 ± 549 1.0 (1 σ) W m⁻² (24). Given that $\Delta F_{GHG} \approx 2.2$ W m⁻² 550 (2, 24), we have a central estimate of total ΔF_{Plio} = 551 3.9 W m⁻² and $\lambda_{\text{Plio}} \approx -1.0$ W m⁻² K⁻¹ (Methods). 552

The novel aspect of the modern ECS constraint in this study is the inclusion of paleoclimate pattern effects for the Pliocene ($\Delta\lambda$; Eq. 3 and 4) and the synthesis with pattern effects for the Last Glacial Maximum (3). We combine uncertainty across SST patterns and atmospheric models (Fig. 2; Methods), which produces a central estimate for Pliocene pattern effects of $\Delta \lambda = -0.37 \pm 0.32 \ (1\sigma) \text{ W m}^{-2} \text{ K}^{-1}$. We adapt the Bayesian framework of SW20 to include Pliocene $\Delta \lambda$, following ref. (3) (Methods).

In Fig. 4a, we show the *S* likelihoods from Pliocene evidence alone. For comparison, we include the original SW20 results and the likelihood with updated Pliocene globalmean ΔT and ΔF_{NonGHG} but excluding Pliocene pattern effects. As seen in Fig. 4a, the updates from the global-mean information alone (excluding $\Delta \lambda$) suggest a much higher ECS (12). However, the spatial information in the Pliocene reconstructions—quantified as $\Delta \lambda$ —has a larger and opposite impact. Including $\Delta \lambda$ shifts the maximum likelihood from 3.7°C to 2.7°C and substantially reduces the high tail of the distribution.

We now revise the best estimate for modern ECS by combining the Pliocene with the additional lines of evidence in SW20: the Last Glacial Maximum (LGM), the historical record (c. 1870-present), and process understanding (Methods) (Fig. 4b). We first show SW20's results, then we include paleoclimate updates only to global-mean quantities (i.e., excluding $\Delta \lambda$), which increases ECS substantially. We then include $\Delta \lambda$ from only the Pliocene or LGM (3), and finally we combine our results for Pliocene and LGM $\Delta\lambda$ to provide a best estimate that fully accounts for paleoclimate pattern effects and their uncertainties. Once again, globalmean paleoclimate updates increase ECS, but the spatial information from pattern effects is more impactful and leads to much stronger overall constraints, particularly for the upper bound. The revised best estimate (median) for modern ECS becomes 2.8° C, with a 66% range of $2.4 - 3.4^{\circ}$ C $(90\% \text{ CI} : 2.1 - 4.0^{\circ} \text{C})$ (Fig. 4b; Table S3). This range represents a major update to the upper bounds in SW20 (2)and the IPCC Sixth Assessment report (AR6) (11), while our lower bound confirms those assessments. For comparison with SW20's robustness tests, we find a 66% robust range of $2.6 - 3.8^{\circ}$ C (90% CI: $2.3 - 4.6^{\circ}$ C), which also represents a much stronger constraint compared to the 95th percentile of 5.7°C in SW20's robust range.

Importantly, our updates to modern ECS also reduce uncertainty in projections of 21^{st} -century warming. Fig. 4c shows the 2081–2100 mean warming relative to 1850–1900 projected by the FaIR model (48), a climate emulator that produced projections for IPCC AR6, under the SSP2-4.5

emissions scenario (11). FaIR's large ensemble is calibrated to match the historical record through 2022 while sampling the full range of uncertainty in ECS (48). We first revise the FaIR ensemble's ECS distribution to match SW20, which produces a minor change (Methods). We then use our fully updated 655 ECS distribution with the FaIR model (Fig. 4b), which yields a median of 2.5°C for end-of-century warming (relative to preindustrial) and substantially reduces uncertainty in the upper bound of warming projections, with a 66% likely range of $2.1 - 2.9^{\circ}$ C (90% CI: $1.9 - 3.2^{\circ}$ C).

651

652

653

654

656

657

658

659

660 Pliocene pattern effects arise from changes in ice sheets, 661 vegetation, and topography that amplify SST warming in the 662 extratropics, in turn leading to cloud feedbacks that further 663 amplify global warming. Recent work on the Last Glacial 664 Maximum also found that ice sheets amplify extratropical 665 SST cooling, similarly leading to positive cloud feedbacks 666 (3). The modern climate feedback from CO_2 alone (in the 667 absence of ice sheet, vegetation, and topography changes) 668 is more stabilizing than the feedbacks associated with the 669 Pliocene and LGM.

670 Updating global mean Pliocene and LGM temperatures 671 based on the latest state-of-the-art reconstructions, while 672 neglecting pattern effects, appears to suggest substantially 673 higher estimates of climate sensitivity compared to SW20 674 (2) and IPCC AR6 (11). However, our results show that 675 including spatial information from those same reconstructions 676 leads to the opposite conclusion, such that paleoclimates now 677 provide much stronger constraints on the modern climate's 678 sensitivity to CO_2 and projected warming. We note that our 679 21st-century projections assume ice sheets will not be lost this 680 century. An important corollary to our results is that a major 681 shift in the modern warming pattern, e.g., caused by loss 682

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXXXX

Fig. 4. Modern climate sensitivity and 21st-century warming, accounting for paleoclimate pattern effects $(\Delta \lambda)$. (a) Pliocene-only likelihoods (dotted) from SW20 (2); (gray) including updates to $\Delta T_{\rm Plio}$ and $\Delta F_{\rm Plio}$ but excluding pattern effects ($\Delta\lambda$); (orange) fully updated SW20 including $\Delta\lambda$. (b) Posterior probability density functions (PDFs) after combining lines of evidence: (gray, white fill) SW20. (grav) SW20 with updated paleoclimate ΔT and ΔF but excluding $\Delta \lambda$, (orange) including $\Delta \lambda$ only for the Pliocene, (blue) $\Delta\lambda$ only for the Last Glacial Maximum (LGM) (3), and (orange, blue fill) Full Update including Pliocene and LGM $\Delta\lambda$. Panels **a-b** show effective climate sensitivity (S), as in SW20. (c) Projected global warming from the FaIR model (48), measured as mean anomaly over 2081-2100 relative to 1850-1900 mean, using climate sensitivity distributions from IPCC AR6 (11), SW20, and the Full Update in panel b. Line caps indicate 5^{th} to 95^{th} percentiles dots indicate 66% likely range box indicates 25^{th} to 75^{th} percentiles, and line indicates median.

of the West Antarctic Ice Sheet (24, 28, 46), could activate positive feedbacks on longer timescales in the modern climate similar to those that amplified global warming during the Pliocene.

Materials and Methods

AGCM simulations. Following ref. (3), estimating paleoclimate $\Delta \lambda$ (Eq. 3) in AGCMs requires three simulations that differ only in their SST/SIC boundary conditions while all other forcings are constant at modern levels, similar to "amip-piForcing" simulations (6, 49).

The three categories of AGCM simulations are: (a) Preindustrial baseline, for which we use the Late Holocene (0 - 4 ka)(16); (b) $2xCO_2$, for which we use the multi-model mean of quasiequilibrium $2xCO_2$ simulations in LongRunMIP (32); (c) Pliocene, for which we use the various reconstructions described in the main text (Fig. 1; Fig. S1–S3). In CAM4 and CAM5, we also test the 5th and 95th percentiles of the plioDA ensemble (Fig. S4); ensemble members are ranked by estimating $\lambda_{\rm Plio}$ with CAM4 Green's functions (40). SST/SIC boundary conditions are prepared as described in ref. (3). We use plioDA's SIC for ref. (13), as no SIC is provided by the latter; this approach is supported by similar ΔT_{Plio} in both reconstructions.

For each AGCM, we compute anomalies in simulations (b) 735 and (c) relative to (a). Simulations are 30 years, and we analyze means over the final 25 years for CAM4 (2° resolution), 736 CAM5.3 (2°), CAM6.0 (2°) (50), and HadGEM3-GC3.1-LL (N96, 737 135 km) (51), or the final 30 of 31 years for GFDL-AM4.0 738 (C96, 100 km) (52). Results are included in Tables S1–S2. As 739 described in ref. (3), we test sensitivity of $\Delta\lambda$ to the 2xCO₂ pattern by computing an alternate $\Delta\lambda_{150yr}^{Alt}$, which uses the 740 741 150-year regression of abrupt CO_2 -forcing simulations in the parent coupled models corresponding to each AGCM instead of 742 our λ_{2xCO_2} . Each coupled model produces a distinct warming 743 pattern over the 150-year period, thus $\Delta \lambda_{150yr}^{Alt}$ samples uncertainty 744

683

684

685

686

687

688

689

690

691

 $\begin{array}{ll} & \text{in CO}_2\text{-warming patterns.} & \text{This test confirms our finding of} \\ & \Delta\lambda < 0 \text{ (Table S1-S2) and produces ECS constraints that agree} \\ & \text{with our main result within 0.1°C (Table S3).} & \text{We decompose} \\ & \lambda \text{ into component feedbacks (Planck, lapse rate, water vapor,} \\ & \text{surface albedo, shortwave cloud, and longwave cloud) using CAM5} \\ & \text{radiative kernels (53), following ref. (39) (Fig. S5-S8).} \\ \end{array}$

750 Constraining modern climate sensitivity. Modern climate sensitivity 751 is the steady-state response of global-mean T to doubling preindus-752 trial CO₂ concentrations, including only the feedbacks acting on an 753 approximate 150-year timescale, i.e., assuming fixed ice sheets and vegetation. This metric, called "effective climate sensitivity" to 754 distinguish it from true equilibrium, is termed S in SW20 (2) and 755 hereafter. To infer S from Pliocene evidence, we build on SW20's 756 equation of Pliocene energy balance by including the updates 757 described below (distribution percentiles provided in Table S3). 758

759

760

$$\Delta T_{\text{Plio}} = \frac{-\Delta F_{\text{CO}_2} \left(1 + f_{\text{CH}_4}\right) + \Delta F_{\text{NonGHG}}}{\frac{\lambda_{2x\text{CO}_2}}{1 + \zeta} + \Delta \lambda}$$
[5]

(i) Our main update is incorporating Pliocene $\Delta \lambda$ as $\Delta \lambda \sim \mathcal{N}(\mu = -0.37, \sigma = 0.32)$ W m⁻² K⁻¹. We estimate μ and σ for $\Delta \lambda$ by combining the spread across AGCMs and reconstructions using the bootstrap approach in ref. (3), with plioDA's best estimate as the reference value for differences in CAM4 and CAM5.

(ii) Pliocene forcing is updated based on the recent estimate of effective radiative forcing from non-GHG sources (ΔF_{NonGHG}), including ice sheets, vegetation, and land-sea distribution (24). We assign $\Delta F_{NonGHG} \sim \mathcal{N}(1.7, 1.0)$ W m⁻² K⁻¹, which assumes a 1 σ uncertainty that approximately maintains the original SW20 uncertainty in total ΔF_{Plio} . For reference, total ΔF_{Plio} (numerator of Eq. 5) is 3.9 ± 1.2 (1σ) W m⁻², with $\Delta F_{CO_2} \approx 2.2$ W m⁻². We note there is substantial uncertainty in the components of ΔF_{Plio} , which merit further study (18, 20, 54–58).

(iii) ΔT_{Plio} is updated from $3.0 \pm 1.0^{\circ}$ C (1 σ) in SW20 to plioDA's constraint of $\Delta T_{\text{Plio}} \sim \mathcal{N}(4.1, 0.6)$ °C (12), which is supported by the estimate in ref. (13) of $3.9 \pm 1.1^{\circ}$ C (1 σ).

From SW20 (2), the remaining parameters in Equation 5 are: CO₂ forcing of $\Delta F_{CO_2} = \Delta F_{2xCO_2} \times \ln(\frac{[CO_2]}{284ppm})/\ln(2)$, where [CO₂] ~ $\mathcal{N}(375,25)$ ppm and $\Delta F_{2xCO_2} \sim \mathcal{N}(4.0,0.3)$ W m⁻²; a scaling factor for methane and N₂O forcing, $1 + f_{CH_4}$, with $f_{CH_4} \sim \mathcal{N}(0.4, 0.1)$; and a timescale transfer factor between quasiequilibrium and the 150-year S timescale, $1 + \zeta$, to account for feedbacks becoming more positive at longer timescales (59), with $\zeta \sim \mathcal{N}(0.06, 0.2)$ based on LongRunMIP (32). Finally, modern climate sensitivity is $S = -\Delta F_{2xCO_2}/\lambda_{2xCO_2}$ (2). We also use an alternate version of the $\Delta\lambda$ in (i) estimated by

784 comparing our paleoclimate AGCM simulations with feedbacks 785 from 150-year regression of abrupt CO₂-forcing simulations in the parent coupled models of each AGCM. Each coupled model 786 produces a distinct warming pattern, thereby sampling uncertainty in the pattern of warming from CO₂. With $\lambda_{150yr}^{CO_2}$ representing the 787 788 regression feedback, we estimate Pliocene $\Delta \lambda_{150yr}^{\text{Alt}} = \lambda_{150yr}^{\text{CO}_2} - \lambda_{\text{Plio}}$, and we use the same bootstrap approach in (i) to find Pliocene $\Delta \lambda_{150yr}^{\text{Alt}} \sim \mathcal{N}(\mu = -0.44, \sigma = 0.40) \text{ W m}^{-2} \text{ K}^{-1}$. Because 789 790 791 $\Delta \lambda_{150 \mathrm{yr}}^{\mathrm{Alt}}$ represents a comparison with the 150-year regression 792 feedback rather than quasi-equilibrium simulations, the denomina-793 tor of Equation 5 becomes $(\lambda_{2xCO_2} + \Delta \lambda_{150yr}^{Alt})/(1+\zeta)$ when using 794 $\Delta \lambda_{150 \mathrm{vr}}^{\mathrm{Alt}}$ instead of our standard $\Delta \lambda$. Note that the percentiles of 795 the final S distribution agree within 0.1°C when using $\Delta \lambda_{150 \text{vr}}^{\text{Alt}}$ 796 (Table S3). 797

There are advantages to our formulation of the Pliocene energy 798 balance (Eq. 5) compared to SW20's Equation 23. First, the 799 Pliocene is now consistent with the LGM, as $\Delta F_{\rm NonGHG}$ is now added directly rather than estimated by multiplying ΔF_{CO_2} by 800 a scale factor, $1 + f_{ESS}$, representing Earth system sensitivity 801 (1, 28). Second, f_{ESS} conflates forcings and feedbacks, and 802 estimating f_{ESS} requires free-running coupled simulations that 803 have inaccurate warming patterns (24). Instead of using f_{ESS} , 804 our Equation 5 separately includes effective radiative forcing, $\Delta F_{\rm NonGHG},$ from AGCM simulations with paleo environmental 805 boundary conditions informed by proxies for ice extent, vegetation, 806

and topography (24, 60), and *paleoclimate pattern effects*, from AGCM simulations with SST/SIC patterns constrained by data assimilation (3).

807

808

809

810

811

812

813

814

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

Climate sensitivity PDFs are summarized in Table S3. We calculate likelihoods and PDFs for S using SW20's Bayesian framework (2). This framework quantitatively combines our findings with additional lines of evidence, and the methods can be continually developed in ongoing efforts (61, 62). Our findings would have the same directional impact on other assessments of ECS and modern warming (11, 63).

In Fig. 4 and Table S3, we show S with and without updates (i), (ii), and (iii). For the LGM evidence in Fig. 815 816 4b, we include updated $\Delta T_{LGM} \sim \mathcal{N}(-6,1)$ °C and LGM $\Delta \lambda \sim \mathcal{N}(-0.37, 0.23)$ W m⁻² K⁻¹ (3). We also use $\lambda_{150yr}^{CO_2}$ in 817 818 Table S1 to estimate LGM $\Delta \lambda_{150yr}^{\text{Alt}} \sim \mathcal{N}(\mu = -0.42, \sigma = 0.34)$ 819 W m⁻² K⁻¹. While SW20's framework generally assumes lines 820 of evidence are independent, our estimates of Pliocene and LGM 821 pattern effects are interrelated. We use the same AGCMs, and 822 the reconstruction methods are partially overlapping. To account for the relationship between Pliocene and LGM $\Delta\lambda$ estimates, we 823 identify pairs of estimates that use similar reconstruction methods 824 and the same AGCM (Table S4). From these pairs, we estimate the 825 Pearson correlation (r) and covariance for $\Delta\lambda$ to be r = 0.56 and cov = 0.0123 [W m⁻² K⁻¹]². For $\Delta\lambda_{150yr}^{Alt}$, we estimate r = 0.87 and cov = 0.0562 [W m⁻² K⁻¹]². We account for the shared error 826 827 828 covariance by drawing correlated values for LGM and Pliocene $\Delta \lambda$ from bivariate normal distributions. However, the S constraints 829 are insensitive to the covariance, as our Full Update percentiles 830 (Table S3) change by less than 0.1°C if we assume zero covariance. 831 This result aligns with the dependence tests in SW20, which also 832 found relatively small impacts from codependencies (2). 833

We include results corresponding to SW20's robustness test, which assumes a uniform prior on S from 0 to 20°C instead of the baseline prior of uniform λ from -10 to 10 W m⁻² K⁻¹, in Table S3. The robustness test yields a median of 3.1°C and 66% range of 2.6 – 3.8°C (90% CI: 2.3 – 4.6°C). As for our main result using the baseline prior, this represents a substantial narrowing of uncertainty compared to the robust ranges in SW20. For illustrative purposes, we also include posterior PDFs considering only the Pliocene evidence and assuming the uniform-S prior. The PDF from the Pliocene alone has a median of 3.8°C and 66% range of 2.4 – 7.2°C (90% CI: 1.9 – 12.9°C).

Projections of 21st-century warming. We analyze warming projections through 2100 under SSP2–4.5 (11) from the FaIR model v1.4.1, calibrated to match historical records as in IPCC AR6 but with updated constraints through 2022 (48). From FaIR, we have a large ensemble of global-mean temperatures from 1850–2100, and each member has an associated ECS. For each ensemble member, we compute the mean warming over 2081–2100 relative to the 1850–1900 mean. We then resample the ensemble with replacement to match the specified ECS distributions from SW20 and from our updated paleoclimate-constrained ECS. This resampling produces revised distributions of projected warming that are associated with the specified ECS distributions (Fig. 4).

Data and code availability. Model output and SST/SIC boundary conditions will be available on Zenodo upon publication. Pliocene reconstructions are available via refs. (12, 13). Late Holocene reconstruction is available via ref. (16). Effective radiative forcings for the Pliocene and modern $2xCO_2$ are available via ref. (24). Results for LGM pattern effects are available via ref. (3). LongRunMIP is available at longrunmip.org. CAM5 radiative kernels are available via ref. (53). Code for calculating ECS is available at doi.org/10.5281/zenod0.3945276 (2).

Author contributions. VTC performed analysis, designed experi-
ments, wrote the original draft, and ran CAM4, CAM5, and CAM6
simulations. KCA and GJH supervised the study. KCA, GJH, CP,
JET, NJB, and VTC obtained funding and computing resources.
JET and MBO contributed plioDA and LGMR reconstructions.
TA ran HadGEM3 and WD ran GFDL-AM4 simulations. MTD
and RF contributed Pliocene-forcing simulations. All authors
contributed to editing the manuscript.862
863
864

ACKNOWLEDGMENTS. The authors acknowledge funding 869 from: a National Defense Science & Engineering Graduate 870 (NDSEG) Fellowship, U.S. Dept. of Defense (VTC); National 871 Science Foundation (NSF) award OCE-2002276 (VTC, KCA, 872 GJH, MTD); National Oceanic and Atmospheric Administration (NOAA) MAPP Program award NA20OAR431039 (KCA, CP, 873 MTD); Alfred P. Sloan Research Fellowship grant FG-2020-13568 874 (KCA); NSF award OCE-2002398 (JET, MBO); NSF award OCE-875 2002385 (CP); NSF award OCE-2002448 (NJB); NSF award AGS-876

- 877
- 878
- 1. PALAEOSENS Project Members, Making sense of palaeoclimate sensitivity. Nature 491, 879 683-691 (2012)
- 880 2. SC Sherwood, et al., An Assessment of Earth's Climate Sensitivity Using Multiple Lines of 881 Evidence. Rev. Geophys. 58 (2020).
- 3. VT Cooper, et al., Last Glacial Maximum pattern effects reduce climate sensitivity estimates. 882 Sci. Adv. 10, 9461 (2024).
- 883 4. KC Armour, CM Bitz, GH Roe, Time-Varying Climate Sensitivity from Regional Feedbacks. 884 J. Clim. 26, 4518-4534 (2013).
- 5. T Andrews, JM Gregory, MJ Webb, The Dependence of Radiative Forcing and Feedback on 885 Evolving Patterns of Surface Temperature Change in Climate Models. J. Clim. 28, 886 1630-1648 (2015).
- 6. JM Gregory, T Andrews, Variation in climate sensitivity and feedback parameters during the 887 historical period. Geophys. Res. Lett. 43, 3911-3920 (2016).
- 888 7. P Ceppi, JM Gregory, Relationship of tropospheric stability to climate sensitivity and Earth's 889 observed radiation budget. Proc. Natl. Acad. Sci. 114, 13126-13131 (2017).
- 8. T Andrews, MJ Webb, The Dependence of Global Cloud and Lapse Rate Feedbacks on the 890 Spatial Structure of Tropical Pacific Warming. J. Clim. 31, 641-654 (2018).
- 891 9. KD Burke, et al., Pliocene and Eocene provide best analogs for near-future climates. Proc. 892 Natl. Acad. Sci. 115, 13288-13293 (2018).
- 10. E de la Vega, TB Chalk, PA Wilson, RP Bysani, GL Foster, Atmospheric CO2 during the 893 Mid-Piacenzian Warm Period and the M2 glaciation. Sci. Reports 10, 11002 (2020).
- 894 11. P Forster, et al., 2021: The Earth's energy budget, climate feedbacks, and climate sensitivity in Climate Change 2021: The Physical Science Basis. Contribution of Working 895 Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 896 eds. V Masson-Delmotte, et al. (Cambridge Univ. Press, Cambridge, UK and New York, 897 NY), (2021),
- 12. JE Tierney, et al., Pliocene Warmth and Patterns of Climate Change Inferred From 898 Paleoclimate Data Assimilation, AGU Adv. 6 (2025).
- 899 13. JD Annan, JC Hargreaves, T Mauritsen, E McClymont, SL Ho, Can we reliably reconstruct 900 the mid-Pliocene Warm Period with sparse data and uncertain models? Clim. Past 20, 1989-1999 (2024). 901
 - 14. JE Hansen, et al., Global warming in the pipeline. Oxf. Open Clim. Chang. 3 (2023)
- 902 15. JE Tierney, et al., Glacial cooling and climate sensitivity revisited. Nature 584, 569-573 903 (2020).
- 16. MB Osman, et al., Globally resolved surface temperatures since the Last Glacial Maximum. 904 Nature 599, 239-244 (2021).
- 905 17. AM Seltzer, et al., Widespread six degrees Celsius cooling on land during the Last Glacial Maximum. Nature 593, 228-232 (2021). 906
- 18. PO Hopcroft, et al., Polar amplification of Pliocene climate by elevated trace gas radiative 907 forcing. Proc. Natl. Acad. Sci. 117, 23401-23407 (2020).
- 908 19. U Salzmann, et al., Challenges in quantifying Pliocene terrestrial warming revealed by data-model discord. Nat. Clim. Chang. 3, 969-974 (2013).
- 909 20. H Dowsett, et al., The PRISM4 (mid-Piacenzian) paleoenvironmental reconstruction. Clim. 910 Past 12, 1519-1538 (2016).
- 911 21. DJ Lunt, et al., On the causes of mid-Pliocene warmth and polar amplification. Earth Planet. Sci. Lett. 321-322, 128-138 (2012)
- 912 22. JE Tierney, AM Haywood, R Feng, T Bhattacharya, BL Otto-Bliesner, Pliocene Warmth 913 Consistent With Greenhouse Gas Forcing. Geophys. Res. Lett. 46, 9136-9144 (2019).
- 23. LE Burton, et al., On the climatic influence of CO2 forcing in the Pliocene. Clim. Past 19, 914 747-764 (2023).
- 915 24. M Dvorak, et al., Mid-Pliocene climate forcing, sea-surface temperature patterns, and 916 implications for modern-day climate sensitivity. J. Clim. (in press, preprint: https://drive.google.com/file/d/1LGProozEkiagSu1aNtrUIGDzX1Wtg2w8/view?usp=sharing). 917 (2025).
- 918 25. JE Weiffenbach, et al., Unraveling the mechanisms and implications of a stronger 919 mid-Pliocene Atlantic Meridional Overturning Circulation (AMOC) in PlioMIP2. Clim. Past 19, 61-85 (2023). 920
- 26. R Feng, et al., Past terrestrial hydroclimate sensitivity controlled by Earth system feedbacks 921 Nat. Commun. 13, 1306 (2022).
- 922 27. S Menemenlis, JM Lora, M Lofverstrom, D Chandan, Influence of stationary waves on mid-Pliocene atmospheric rivers and hydroclimate. Glob. Planet. Chang. 204, 103557 923 (2021). 924
- 28. DJ Lunt, et al., Earth system sensitivity inferred from Pliocene modelling and data. Nat. Geosci. 3, 60-64 (2010). 925
- 29. GJ Hakim, et al., The last millennium climate reanalysis project: Framework and first results. 926 J. Geophys. Res. Atmospheres 121, 6745-6764 (2016).
- 927 30. R Caballero, M Huber, State-dependent climate sensitivity in past warm climates and its implications for future climate projections. Proc. Natl. Acad. Sci. 110, 14162-14167 (2013). 928
- 31. I Eisenman, KC Armour, The radiative feedback continuum from Snowball Earth to an 929 ice-free hothouse. Nat. Commun. 15, 6582 (2024). 930

1844380 (NJB); Met Office Hadley Centre Climate Programme 931 funded by DSIT (TA); NSF award OCE-2103055 (RF); NSF 932 award AGS-2238875 (RF). VTC acknowledges computing support 933 from Derecho (doi:10.5065/qx9a-pg09) and Casper (https://ncar.pub/ casper) provided by the NSF National Center for Atmospheric 934 Research (NCAR), sponsored by NSF. The authors thank Yi Ming, 935 Dan Amrhein, and Jiang Zhu for helpful discussions and NSF (No. 936 2238875) for funding a 2024 workshop on "Climate evolution from 937 early Eocene to mid-Pliocene," which helped shape this work. 938

- 32. M Rugenstein, et al., LongRunMIP: Motivation and Design for a Large Collection of Millennial-Length AOGCM Simulations. Bull. Am. Meteorol. Soc. 100, 2551-2570 (2019).
- 33. DE Amrhein, GJ Hakim, LA Parsons, Quantifying Structural Uncertainty in Paleoclimate Data Assimilation With an Application to the Last Millennium. Geophys. Res. Lett. 47 (2020)
- 34. AM Haywood, et al., The Pliocene Model Intercomparison Project Phase 2: large-scale climate features and climate sensitivity. Clim. Past 16, 2095-2123 (2020).
- 35. NJ Burls, AV Fedorov, What Controls the Mean East-West Sea Surface Temperature Gradient in the Equatorial Pacific: The Role of Cloud Albedo. J. Clim. 27, 2757-2778 (2014).
- 36. E Erfani, NJ Burls, The Strength of Low-Cloud Feedbacks and Tropical Climate: A CESM Sensitivity Study. J. Clim. 32, 2497-2516 (2019).
- 37. HL Ford, et al., Sustained mid-Pliocene warmth led to deep water formation in the North Pacific. Nat. Geosci. 15, 658-663 (2022).
- 38. EL McClymont, et al., Lessons from a high-CO2 world: An ocean view from 3 million years ago. Clim. Past 16, 1599-1615 (2020).
- BJ Soden, et al., Quantifying Climate Feedbacks Using Radiative Kernels. J. Clim. 21, 3504-3520 (2008).
- 40. Y Dong, C Proistosescu, KC Armour, DS Battisti, Attributing Historical and Future Evolution of Radiative Feedbacks to Regional Warming Patterns using a Green's Function Approach: The Preeminence of the Western Pacific. J. Clim. 32, 5471-5491 (2019)
- 41. MW Wara, AC Ravelo, ML Delaney, Permanent El Nino-Like Conditions During the Pliocene Warm Period. Science 309, 758-761 (2005).
- 42. AV Fedorov, et al., The Pliocene Paradox (Mechanisms for a Permanent El Nino). Science 312, 1485-1489 (2006).
- 43. CL O'Brien, et al., High sea surface temperatures in tropical warm pools during the Pliocene. Nat. Geosci. 7, 606-611 (2014).
- 44. C Brierley, N Burls, C Ravelo, A Fedorov, Pliocene warmth and gradients, Nat, Geosci, 8. 419-420 (2015).
- 45. NJ Burls, AV Fedorov, Wetter subtropics in a warmer world: Contrasting past and future hydrological cycles, Proc. Natl. Acad. Sci. 114, 12888-12893 (2017).
- 46. JE Weiffenbach, et al., Highly stratified mid-Pliocene Southern Ocean in PlioMIP2. Clim. Past 20, 1067-1086 (2024).
- 47. C Wang, et al., Diagnosing the Factors That Contribute to the Intermodel Spread of Climate Feedback in CMIP6. J. Clim. 38, 663-674 (2025).
- 48. C Smith, et al., fair-calibrate v1.4.1: calibration, constraining, and validation of the FaIR simple climate model for reliable future climate projections. Geosci. Model. Dev. 17, 8569-8592 (2024).
- 49. T Andrews, Using an AGCM to Diagnose Historical Effective Radiative Forcing and Mechanisms of Recent Decadal Climate Change. J. Clim. 27, 1193-1209 (2014).
- 50. G Danabasoglu, et al., The Community Earth System Model Version 2 (CESM2). J. Adv. Model. Earth Syst. 12 (2020).
- 51. KD Williams, et al., The Met Office Global Coupled Model 3.0 and 3.1 (GC3.0 and GC3.1) Configurations. J. Adv. Model. Earth Syst. 10, 357-380 (2017).
- 52. IM Held, et al., Structure and Performance of GFDL's CM4.0 Climate Model. J. Adv. Model. Earth Syst. 11, 3691-3727 (2019).
- 53. AG Pendergrass, A Conley, FM Vitt, Surface and top-of-atmosphere radiative feedback kernels for CESM-CAM5. Earth Syst. Sci. Data 10, 317-324 (2018).
 - A Haywood, et al., Pliocene Model Intercomparison Project Phase 3 (PlioMIP3) Science plan and experimental design. Glob. Planet. Chang. 232, 104316 (2024).
- 55. GR Grant, et al., The amplitude and origin of sea-level variability during the Pliocene epoch. Nature 574, 237-241 (2019).
- 56. N Sagoo, T Storelvmo, Testing the sensitivity of past climates to the indirect effects of dust. 979 Geophys. Res. Lett. 44, 5807-5817 (2017). 57. A Dutton, et al., Sea-level rise due to polar ice-sheet mass loss during past warm periods.
- 981 Science 349 (2015) 58. N Unger, X Yue, Strong chemistry-climate feedbacks in the Pliocene. Geophys. Res. Lett. 982
- 41, 527-533 (2014). 59. C Proistosescu, PJ Huybers, Slow climate mode reconciles historical and model-based
- estimates of climate sensitivity. Sci. Adv. 3 (2017). 60. J Zhu, CJ Poulsen, Last Glacial Maximum (LGM) climate forcing and ocean dynamical
- feedback and their implications for estimating climate sensitivity. Clim. Past 17, 253-267 (2021).
- 61. K Marvel, M Webb, Towards robust community assessments of the Earth's climate sensitivity. Earth Syst. Dyn. 16, 317-332 (2025).
- 62. SC Sherwood, CE Forest, Opinion: Can uncertainty in climate sensitivity be narrowed further? Atmospheric Chem. Phys. 24, 2679-2686 (2024).
- 63. D Kaufman, V Masson-Delmotte, Opinion: Distribute paleoscience information across the next Intergovernmental Panel on Climate Change reports. Clim. Past 20, 2587-2594 (2024)

968

969

970

971

972

973

974

975

976

977

978

980

983

984

985

986

987

988

989

990

991

992

939 940

941

942

943

944

945

946

947

948

949

PNAS

² Supporting Information for

³ Paleoclimate pattern effects help constrain climate sensitivity and 21st-century warming

V. T. Cooper, K. C. Armour, G. J. Hakim, J. E. Tierney, N. J. Burls, C. Proistosescu, T. Andrews, W. Dong, M. T. Dvorak, R. Feng,

- 5 M. B. Osman, Y. Dong
- 6 Vincent T. Cooper.

1

7 E-mail: vcooper@uw.edu

8 This PDF file includes:

- 9 Figs. S1 to S11
- 10 Tables S1 to S4
- 11 SI References

Fig. S1. Differences between the 2xCO₂ pattern of sea-surface temperature (SST) anomalies and Pliocene patterns of SST anomalies. Panels correspond to Figure 1 of Main Text. Before taking the differences, each pattern's local anomalies are divided by its global-mean SST anomaly to emphasize the spatial patterns. Red regions indicate stronger relative amplification of warming in the LongRunMIP 2xCO₂ pattern (1), while blue regions indicate stronger relative amplification of Pliocene warming. See Figure S10 for zonal-mean SST anomalies and pattern differences.

Fig. S2. Sea-ice concentration (SIC): LongRunMIP 2xCO₂ and Pliocene reconstructions. Panels show annual-mean. Note that plioDA sea ice is used for the Annan et al. (2024) reconstruction.

Fig. S3. Sea-ice concentration (SIC) anomalies: LongRunMIP 2xCO₂ and Pliocene reconstructions relative to preindustrial baseline. Panels show annual-mean differences relative to the preindustrial (Late Holocene) baseline (2). Note that plioDA sea ice is used for the Annan et al. (2024) reconstruction.

Fig. S4. 5th and 95th percentile ensemble members from plioDA reconstruction (3). (a–b) Sea-surface temperature (SST) anomalies and (c–d) sea-ice concentration (SIC) for ensemble members with the 5th percentile net feedback (more negative, stable climate) and 95th percentile net feedback (more positive, less stable climate). Ensemble members are ranked using CAM4 Green's functions (4).

Fig. S5. Kernel decomposition of radiative feedbacks (λ). Note that each legend applies to both panels: different sea-surface temperature and sea ice patterns are distinguished by colors/borders, while the different atmospheric general circulation models (AGCMs) are distinguished by symbol shapes. (a) Decomposition of feedbacks using radiative kernels (5) from CAM5 (6). LR+WV represents the lapse rate and water vapor feedbacks. (b) Pattern effects ($\Delta \lambda = \lambda_{2xCO_2} - \lambda_{Plio}$) for each component feedback in panel **a**.

Fig. S6. Decomposition of radiative feedbacks (λ) from direct model outputs for clear-sky radiation and cloud radiative effects (CRE). Results are separated into longwave (LW) and shortwave (SW) components. (a) Decomposition of feedbacks, and (b) decomposition of pattern effects $(\Delta \lambda = \lambda_{2xCO_2} - \lambda_{Plio})$.

Fig. S7. Spatial pattern of local radiative feedbacks (λ). Local feedbacks are calculated as $\Delta N/\overline{\Delta T}$, where ΔN is the local anomaly in top-of-atmosphere radiation, and $\overline{\Delta T}$ is the global-mean anomaly in near-surface air temperature. Multi-model mean, including CAM4, CAM5, CAM6, and GFDL-AM4 from (a) LongRunMIP 2xCO₂ (1), (b) plioDA (3), and (c) Annan et al. (7).

- Figure S8–S9. Zonal mean of local radiative feedbacks (λ) and pattern effects, $\Delta \lambda = \lambda_{2xCO_2} \lambda_{Plio}$, shown
- on the following pages. Local feedbacks are calculated as $\Delta N/\overline{\Delta T}$, where ΔN is the local anomaly in top-of-atmosphere
- radiation, and $\overline{\Delta T}$ is the global-mean anomaly in near-surface air temperature. (a) Feedbacks, λ , in CAM5 using various
- patterns of sea-surface temperature (SST) and sea ice, and (b) Pattern effects, $\Delta \lambda = \lambda_{2xCO_2} \lambda_{Plio}$, in CAM5 corresponding to panel **a**. (c-d) Repeat of panels **a**-**b** with results from multiple models (CAM4, CAM5, CAM6, and GFDL-AM4) and a
- ¹⁷ subset of SST and sea ice patterns.

Fig. S8. See caption on preceding page.

Fig. S9. See caption that precedes Figure S8.

Fig. S10. Zonal-mean patterns of temperature anomalies. (A) Normalized T from various patterns and (b) differences versus LongRunMIP 2xCO₂ pattern. (c-d) Repeats panels a and b for SST. Note that a-b show AGCM output from CAM5, whereas c-d show input boundary conditions for all AGCMs.

Fig. S11. Sea-surface temperature (SST) response to Pliocene forcings in CESM2.1. Results shown are from (8). (**a**-**c**) Patterns of SST anomalies (normalized by global-mean anomalies) relative to preindustrial control from (**a**) all Pliocene forcings, (**b**) Non-GHG forcings including ice sheets, vegetation, topography, and bathymetry, and (**c**) CO₂ concentration of 400 ppm, which accounts for both CO₂ and methane forcing. (**d**) Difference between SST response to CO₂ versus non-GHG forcing, represented as panel **c** minus panel **b**; red regions indicate stronger relative amplification of warming from CO₂, while blue regions indicate stronger relative amplification from non-GHG forcings. In all panels, regions of preindustrial sea ice are masked in light gray. The CESM2 simulations follow the PlioMIP2 protocol (9, 10).

Table S1. All units are $W m^{-2} K^{-1}$. Pliocene pattern effects, $\Delta \lambda = \lambda_{2xCO_2} - \lambda_{Plio}$, from three patterns of reconstructed Pliocene SST and sea ice in various AGCMs (CAM4 coupled to CLM4.5, CAM5.3 coupled to CLM5.0, CAM6.0 coupled to CLM5.0, GFDL-AM4.0, and HadGEM3-GC3.1-LL). Alternate values for Pliocene pattern effects, $\Delta \lambda_{150yr}^{Alt} = \lambda_{150yr}^{CO_2} - \lambda_{Plio}$, are shown using 150-yr regression of abrupt-4xCO₂ simulations (abrupt-2xCO₂ is used for CESM2.1-CAM6.0 to avoid issues with the ice nucleation scheme and cloud microphysics timestep (11, 12) that impact the feedback diagnosed from the 4xCO₂ simulation) from coupled models corresponding to each AGCM (13).

Model	Pattern	$\Delta\lambda$	$\lambda_{\rm Plio}$	λarco.	$\Delta \lambda_{150}^{\text{Alt}}$	$\lambda_{150}^{CO_2}$
CAM4	plioDA	-0.57	-0.82	-1.39	-0.41	-1.23
CAM4	plioDA: PlioMIP2 Prior	-0.18	-1.21	-1.39	-0.02	-1.23
CAM4	Annan24	-0.26	-1.13	-1.39	-0.10	-1.23
CAM5	plioDA	-0.48	-0.48	-0.96	-0.67	-1.15
CAM5	plioDA: PlioMIP2 Prior	-0.10	-0.86	-0.96	-0.29	-1.15
CAM5	Annan24	-0.24	-0.72	-0.96	-0.43	-1.15
CAM6	plioDA	-0.69	-0.13	-0.83	-1.08	-1.21
CAM6	plioDA: PlioMIP2 Prior	-0.17	-0.65	-0.83	-0.56	-1.21
CAM6	Annan24	-0.43	-0.39	-0.83	-0.82	-1.21
GFDL-AM4	plioDA	-0.44	-0.49	-0.93	-0.37	-0.86
GFDL-AM4	, plioDA: PlioMIP2 Prior	-0.12	-0.81	-0.93	-0.05	-0.86
GFDL-AM4	Annan24	-0.28	-0.65	-0.93	-0.21	-0.86
HadGEM3	plioDA	-0.20	-0.44	-0.64	-0.19	-0.63
HadGEM3	plioDA: PlioMIP2 Prior	-0.02	-0.62	-0.64	-0.01	-0.63
HadGEM3	Annan24	-0.24	-0.41	-0.64	-0.22	-0.63
CAM4	mean	-0.34	-1.05	-1.39	-0.18	-1.23
CAM5	mean	-0.27	-0.68	-0.96	-0.47	-1.15
CAM6	mean	-0.43	-0.39	-0.83	-0.82	-1.21
GFDL-AM4	mean	-0.28	-0.65	-0.93	-0.21	-0.86
HadGEM3	mean	-0.15	-0.49	-0.64	-0.14	-0.63
mean	Annan24	-0.29	-0.66	-0.95	-0.36	-1.02
mean	plioDA	-0.48	-0.47	-0.95	-0.54	-1.02
mean	plioDA: PlioMIP2 Prior	-0.12	-0.83	-0.95	-0.18	-1.02
mean	mean	-0.30	-0.65	-0.95	-0.36	-1.02
1σ	1σ	0.19	0.29		0.31	

Table S2. Pliocene pattern effects, $\Delta \lambda = \lambda_{2xCO_2} - \lambda_{Plio}$, from various patterns of reconstructed Pliocene SST and sea ice in CAM4 and CAM5. Global-mean anomalies for SST, near-surface air temperature (T), and top-of-atmosphere radiative imbalance (N) are shown for reference. Alternate values for Pliocene pattern effects, $\Delta \lambda_{150yr}^{Alt} = \lambda_{150yr}^{CO_2} - \lambda_{Plio}$, are shown using 150-yr regression feedbacks (Table S1).

Inits		$Wm^{-2}K^{-1}$	$Wm^{-2}K^{-1}$	K	K	Wm^{-2}	$W_{m}^{-2}K^{-1}$
Model	Pattern			ΔSST	ΔT	ΔN	$\Delta \lambda^{\text{Alt}}$
	nlioDA	-0.57	-0.82	3.00	3 90	-3.20	
	plioDA: PlioVar Data	-0.57	-0.02	2.00	3.30	2.49	-0.41
CAMA	plioDA: PlioMIP2 Brier	-0.47	-0.52	2.09	3.70	-3.40	-0.31
CAIVI4		-0.18	-1.21	2.94	3.00	-4.07	-0.02
CAIVI4	plioDA: Cloud Prior	-0.63	-0.76	2.83	3.68	-2.79	-0.47
CAM4	plioDA: 5%	-0.01	-1.39	3.96	4.88	-6.77	0.16
CAM4	plioDA: 95%	-1.01	-0.38	3.29	4.02	-1.55	-0.85
CAM4	Annan24	-0.26	-1.13	2.82	3.72	-4.21	-0.10
CAM4	mean	-0.45	-0.94	3.10	3.98	-3.81	-0.29
CAM4	1σ	0.33	0.33	0.41	0.41	1.65	0.33
CAM4	2xCO2: LongRunMIP		-1.39	2.35	3.16	-4.40	
Model	Pattern	$\Delta\lambda$	λ	ΔSST	ΔT	ΔN	$\Delta \lambda_{150 \mathrm{vr}}^{\mathrm{Alt}}$
CAM5	plioDA	-0.48	-0.48	3.00	3.98	-1.90	-0.67
CAM5	plioDA: PlioVar Data	-0.43	-0.53	2.89	3.85	-2.02	-0.62
CAM5	plioDA: PlioMIP2 Prior	-0.10	-0.86	2.94	3.96	-3.40	-0.29
CAM5	plioDA: Cloud Prior	-0.56	-0.39	2.83	3.75	-1.48	-0.76
CAM5	plioDA: 5%	0.13	-1.09	3.96	4.99	-5.42	-0.06
CAM5	plioDA: 95%	-0.80	-0.16	3.29	4.10	-0.65	-0.99
CAM5	Annan24	-0.24	-0.72	2.82	3.78	-2.71	-0.43
CAM5	mean	-0.35	-0.60	3.10	4.06	-2.51	-0.55
CAM5	1σ	0.31	0.31	0.41	0.43	1.55	0.31
CAM5	2xCO2: LongRunMIP		-0.96	2.35	3.21	-3.07	

Table S3. Posterior distributions of climate sensitivity (S). "Combined Evidence" assumes the Baseline Prior, $\lambda \sim \text{Unif}(-10, 10) \text{ W m}^{-2} \text{ K}^{-1}$, and includes Process Understanding, Historical Evidence, and Paleoclimate Evidence from the Last Glacial Maximum (LGM) and Pliocene. The Robust Range also combines lines of evidence but assumes a Uniform S Prior, $S \sim \text{Unif}(0, 20) K$ (14). "Pliocene Only" considers only Pliocene evidence and assumes the Uniform S Prior. All uncertainties shown are 1σ values. Table structure is comparable to Table 10 of Sherwood, Webb et al. (2020).

Combined Evidence (Baseline Prior)	5th	17th	50th	83rd	95th	Mean	ΔT_{Plio}	ΔF_{NonGHG}^{Plio}	ΔT_{LGM}
SW20: Original	2.3	2.6	3.1	3.9	4.7	3.2	$\textbf{3.0} \pm \textbf{1.0}$	f_{ESS}	-5 ± 1
+ Update ΔT_{LGM}	2.3	2.7	3.2	4.1	5.0	3.4	$\textbf{3.0} \pm \textbf{1.0}$	f_{ESS}	-6 ± 1
+ Update ΔT_{Plio}	2.6	2.9	3.6	4.6	5.6	3.8	4.1 ± 0.6	f_{ESS}	-6 ± 1
+ Update ΔF_{NonGHG}^{Plio}	2.5	2.8	3.4	4.3	5.2	3.6	4.1 ± 0.6	1.7 ± 1.0	-6 ± 1
Include only LGM $\Delta\lambda$	2.3	2.6	3.0	3.7	4.4	3.2	4.1 ± 0.6	1.7 ± 1.0	-6 ± 1
Include only Pliocene $\Delta\lambda$	2.3	2.6	3.1	3.9	4.7	3.3	4.1 ± 0.6	1.7 ± 1.0	-6 ± 1
Full Update incl. Paleo $\Delta\lambda$	2.1	2.4	2.8	3.4	4.0	2.9	4.1 ± 0.6	1.7 ± 1.0	-6 ± 1
Alt. Update incl. Paleo $\Delta \lambda_{150 \mathrm{vr}}^{\mathrm{Alt}}$	2.1	2.4	2.8	3.5	4.1	3.0	4.1 ± 0.6	1.7 ± 1.0	-6 ± 1
Č.									
Combined, Robust Range (Unif. S Prior)	5th	17th	50th	83rd	95th	Mean	ΔT_{Plio}	ΔF_{NonGHG}^{Plio}	ΔT_{LGM}
SW20: Original Robust Range (Unif. S)	2.4	2.8	3.5	4.5	5.7	3.7	$\textbf{3.0} \pm \textbf{1.0}$	f_{ESS}	-5 ± 1
+ Update $\Delta T, \ \Delta F^{Plio}_{NonGHG}$ (Unif. S)	2.6	3.0	3.8	4.9	6.2	4.0	4.1 ± 0.6	1.7 ± 1.0	-6 ± 1
Full Update incl. Paleo $\Delta\lambda$ (Unif. S)	2.3	2.6	3.1	3.8	4.6	3.2	4.1 ± 0.6	1.7 ± 1.0	-6 ± 1
Alt. Update incl. Paleo $\Delta \lambda_{150 \mathrm{vr}}^{\mathrm{Alt}}$ (Unif. S)	2.3	2.6	3.1	3.9	4.8	3.3	4.1 ± 0.6	1.7 ± 1.0	-6 ± 1
Pliocene Only (Unif. S Prior)	5th	17th	50th	83rd	95th	Mean	ΔT_{Plio}	ΔF_{NonGHG}^{Plio}	
SW20: Original	1.6	2.4	4.0	6.8	10.1	4.7	$\textbf{3.0} \pm \textbf{1.0}$	f_{ESS}	
+ Update ΔT_{Plio}	2.9	3.8	5.6	8.6	12.3	6.3	$\textbf{3.0} \pm \textbf{1.0}$	f_{ESS}	
+ Update ΔF_{NonGHG}^{Plio}	2.5	3.2	4.7	7.4	11.2	5.4	4.1 ± 0.6	1.7 ± 1.0	
Include Pliocene $\Delta\lambda$	1.9	2.4	3.8	7.2	12.9	5.0	4.1 ± 0.6	1.7 ± 1.0	
Alt. Pliocene $\Delta \lambda_{150 \mathrm{vr}}^{\mathrm{Alt}}$		2.4	3.8	8.3	14.8	5.3	$\textbf{4.1}\pm\textbf{0.6}$	1.7 ± 1.0	

Units in °C; ΔF units in W m⁻².

Table S4. Paired estimates of Pliocene and LGM pattern effects, which use similar methods for data assimilation and the same AGCMs. The pairs are used to estimate the Pearson correlation and covariance between estimates of Pliocene and LGM pattern effects (15). For the standard $\Delta\lambda, r = 0.56$ and cov = 0.0123 [W m⁻² K⁻¹]². For $\Delta\lambda_{150yr}^{Alt}$, r = 0.87 and cov = 0.0562 [W m⁻² K⁻¹]². Table units are W m⁻² K⁻¹. LGM results use updated CESM2.1 λ_{150yr}^{Alt} in Table S1.

AGCM	Plio Pattern	LGM Pattern	$\Delta \lambda_{\rm Plio}$	$\Delta \lambda_{\rm LGM}$	$\Delta \lambda_{\rm Plio}^{\rm Alt150}$	$\Delta \lambda_{\rm LGM}^{\rm Alt150}$
CAM4	plioDA	LGMR	-0.57	-0.45	-0.41	-0.21
CAM5	plioDA	LGMR	-0.48	-0.31	-0.67	-0.41
CAM6	plioDA	LGMR	-0.69	-0.63	-1.08	-1.02
AM4	plioDA	LGMR	-0.44	-0.33	-0.37	-0.27
HadGEM3	plioDA	LGMR	-0.20	-0.27	-0.19	-0.29
CAM4	Annan	Annan	-0.57	-0.29	-0.10	-0.06
CAM5	Annan	Annan	-0.48	-0.09	-0.43	-0.18
CAM4	plioDA: Cloud Prior	LGMR	-0.63	-0.45	-0.47	-0.21
CAM5	plioDA: Cloud Prior	LGMR	-0.56	-0.31	-0.76	-0.41
CAM4	plioDA: Cloud Prior	lgmDA	-0.63	-0.69	-0.47	-0.45
CAM5	plioDA: Cloud Prior	lgmDA	-0.56	-0.51	-0.76	-0.61
CAM4	plioDA	lgmDA	-0.57	-0.69	-0.41	-0.45
CAM5	plioDA	lgmDA	-0.48	-0.51	-0.67	-0.61

18 References

- M Rugenstein, et al., LongRunMIP: Motivation and Design for a Large Collection of Millennial-Length AOGCM Simulations.
 Bull. Am. Meteorol. Soc. 100, 2551–2570 (2019).
- 2. MB Osman, et al., Globally resolved surface temperatures since the Last Glacial Maximum. Nature 599, 239–244 (2021).
- 3. JE Tierney, et al., Pliocene Warmth and Patterns of Climate Change Inferred From Paleoclimate Data Assimilation. AGU
 Adv. 6 (2025).
- Y Dong, C Proistosescu, KC Armour, DS Battisti, Attributing Historical and Future Evolution of Radiative Feedbacks to Regional Warming Patterns using a Green's Function Approach: The Preeminence of the Western Pacific. J. Clim. 32, 5471–5491 (2019).
- 5. BJ Soden, et al., Quantifying Climate Feedbacks Using Radiative Kernels. J. Clim. 21, 3504–3520 (2008).
- AG Pendergrass, A Conley, FM Vitt, Surface and top-of-atmosphere radiative feedback kernels for CESM-CAM5. Earth Syst. Sci. Data 10, 317–324 (2018).
- JD Annan, JC Hargreaves, T Mauritsen, E McClymont, SL Ho, Can we reliably reconstruct the mid-Pliocene Warm
 Period with sparse data and uncertain models? *Clim. Past* 20, 1989–1999 (2024).
- 8. M Dvorak, \mathbf{et} al., Mid-Pliocene climate forcing, sea-surface temperature patterns, 32 implications for modern-day climate sensitivity. J.Clim. (in preprint: 33 and press, https://drive.google.com/file/d/1LGProozEkiagSu1aNtrUIGDzX1Wtg2w8/view?usp=sharing). (2025). 34
- 9. AM Haywood, et al., The Pliocene Model Intercomparison Project Phase 2: large-scale climate features and climate sensitivity. *Clim. Past* 16, 2095–2123 (2020).
- R Feng, et al., Past terrestrial hydroclimate sensitivity controlled by Earth system feedbacks. Nat. Commun. 13, 1306 (2022).
- II. J Zhu, et al., LGM Paleoclimate Constraints Inform Cloud Parameterizations and Equilibrium Climate Sensitivity in CESM2. J. Adv. Model. Earth Syst. 14, e2021MS002776 (2022).
- 12. N Burls, N Sagoo, Increasingly Sophisticated Climate Models Need the Out-Of-Sample Tests Paleoclimates Provide. J.
 Adv. Model. Earth Syst. 14 (2022).
- 13. T Andrews, et al., On the Effect of Historical SST Patterns on Radiative Feedback. J. Geophys. Res. Atmospheres 127 (2022).
- 14. SC Sherwood, et al., An Assessment of Earth's Climate Sensitivity Using Multiple Lines of Evidence. *Rev. Geophys.* 58 (2020).
- 15. VT Cooper, et al., Last Glacial Maximum pattern effects reduce climate sensitivity estimates. Sci. Adv. 10, 9461 (2024).