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ABSTRACT: Historical observations of Earth’s climate underpin our knowledge and predictions of climate variability
and change. However, the observations are incomplete and uncertain, and existing datasets based on these observations
typically do not assimilate observations simultaneously across different components of the climate system, yielding incon-
sistencies that limit understanding of coupled climate dynamics. Here, we use coupled data assimilation, which synthesizes
observational and dynamical constraints across all climate fields simultaneously, to reconstruct globally resolved sea surface
temperature (SST), near-surface air temperature (T), sea level pressure (SLP), and sea ice concentration (SIC), over 1850–
2023. We use a Kalman filter and forecasts from an efficient emulator, the linear inverse model (LIM), to assimilate obser-
vations of SST, land T, marine SLP, and satellite-era SIC. We account for model error by training LIMs on eight CMIP6
models, and we use the LIMs to generate eight independent reanalyses with 200 ensemble members, yielding 1600 total
members. Key findings in the tropics include post-1980 trends in the Walker circulation that are consistent with past vari-
ability, whereas the tropical SST contrast (the difference between warmer and colder SSTs) shows a distinct strengthening
since 1975. El Niño–Southern Oscillation (ENSO) amplitude exhibits substantial low-frequency variability and a local max-
imum in variance over 1875–1910. In polar regions, we find a muted cooling trend in the Southern Ocean post-1980 and
substantial uncertainty. Changes in Antarctic sea ice are relatively small between 1850 and 2000, while Arctic sea ice de-
clines by 0.56 0.1 (1s) million km2 during the 1920s.

SIGNIFICANCE STATEMENT: The key advance in our reconstruction is that the ocean, atmosphere, and sea ice
are dynamically consistent with each other and with observations across all components, thus forming a true climate re-
analysis. Existing climate datasets are typically derived separately for each component (e.g., atmosphere, ocean, and
sea ice), leading to spurious trends and inconsistencies in coupled climate variability. We use coupled data assimilation
to unify observations and coupled dynamics across components. We combine forecasts from climate models with obser-
vations from ocean vessels and weather stations to produce monthly state estimates spanning 1850–2023 and a novel
quantification of globally resolved uncertainty. This reconstruction provides insights into historical variability and
trends while motivating future efforts to reduce uncertainties in the climate record.
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1. Introduction

The historical record (c. 1850–present) is central to our un-
derstanding of climate variability and Earth’s response to an-
thropogenic forcings, but we have yet to fully extract the
available information from instrumental data. Observations
of sea surface temperature (SST), near-surface air tempera-
ture (T), and sea level pressure (SLP) from ships of opportu-
nity and weather stations are noisy, sparse, and vary over
time, which adds an incomplete data problem (Schneider
2001) to analyses of climate variability and change that cannot
be avoided and should not be ignored.

To prepare observations for climate analysis, data sources
must first be homogenized (e.g., Kent and Kennedy 2021;
Chan and Huybers 2019; Chan et al. 2023; Karl et al. 2015;
Hausfather et al. 2017; Cowtan et al. 2018), and then the miss-
ing values must be imputed. Imputation is typically statistical,
employing pattern-based methods, including empirical orthog-
onal functions (EOFs), or kriging (e.g., Kaplan et al. 1998; Rohde
et al. 2013; Cowtan and Way 2014; Hirahara et al. 2014; Huang
et al. 2017; Kadow et al. 2020; Vaccaro et al. 2021). Furthermore,
when values are imputed for different climate fields, e.g., SST
and SLP, there are no dynamical constraints ensuring that the
coupled fields are physically consistent. Imputation and homoge-
nization can have pronounced impacts on assessments of the cli-
mate sensitivity to increasing greenhouse gases (e.g., Sherwood
et al. 2020; Forster et al. 2021; Modak and Mauritsen 2023),
efforts to distinguish internal variability from forced climate
change (e.g., Hegerl et al. 2019; Wills et al. 2020), understanding
of atmosphere–ocean variability (e.g., Battisti et al. 2019), and
evaluation of climate models (e.g., Wills et al. 2022; Simpson et al.
2025). Here, we apply a different approach to solve the incom-
plete data problem: We use coupled data assimilation to impose
observational and dynamical constraints across all climate fields
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simultaneously, ensuring that the full state estimate is internally
consistent.

SST patterns play a ubiquitous role in regulating climate
variability (e.g., Bjerknes 1969; Barsugli and Battisti 1998;
Alexander et al. 2002; Deser et al. 2010a; Newman et al. 2016;
Czaja et al. 2019; Capotondi et al. 2023), radiative feedbacks
(e.g., Armour et al. 2013; Andrews et al. 2015; Zhou et al.
2016; Ceppi and Gregory 2017; Andrews and Webb 2018;
Dong et al. 2019; Fueglistaler 2019; Andrews et al. 2022;
Salvi et al. 2023; Cooper et al. 2024), and the hydrologic cycle
(e.g., Hastenrath and Greischar 1993; Xie et al. 2010; Hoerling
et al. 2010; Chadwick et al. 2014; Lehner et al. 2018; Siler et al.
2019; Cook et al. 2022; Kuo et al. 2023; Seager et al. 2023).
There are a variety of recent (c. 1980–present) climate phe-
nomena tied to SSTs that seem either unprecedented or
unremarkable depending on what we deem to be natural vari-
ability, and this interpretation of recent trends relies on the
incomplete and brief instrumental record (e.g., Wunsch 1999).
In the tropical Pacific, the zonal SST gradient has strength-
ened (Solomon and Newman 2012; Coats and Karnauskas
2017; Lee et al. 2022; Watanabe et al. 2024), with cooling in
the east Pacific and warming in the west Pacific that has coin-
cided with an apparent strengthening of the Walker circula-
tion post-1980 (e.g., L’Heureux et al. 2013; McGregor et al.
2014; Watanabe et al. 2023; Heede and Fedorov 2023) and
distinct tropospheric temperature trends (Flannaghan et al.
2014; Fueglistaler 2019; Po-Chedley et al. 2021). At the poles,
the Arctic has warmed rapidly since 1980 with substantial loss
of sea ice (Dörr et al. 2023; England et al. 2021; Notz and
SIMIP Community 2020), while the Southern Ocean has
cooled with an overall expansion of sea ice}until 2015}after
which the Southern Ocean has shown rapid warming and sea
ice loss (Fan et al. 2014; Stuecker et al. 2017; Fogt et al. 2022;
Espinosa et al. 2024; Roach and Meier 2024; Zhang and Li
2023; Turner et al. 2022; Dong et al. 2023; Suryawanshi et al.
2023; Bonan et al. 2024).

A major challenge for the climate dynamics community is
understanding the causes of these observed changes as well as
the apparent yet debated inability of our state-of-the-art cou-
pled climate models to replicate them (e.g., Wills et al. 2022;
Dong et al. 2021; Rugenstein et al. 2023; Seager et al. 2022;
Olonscheck et al. 2020; Chung et al. 2019; Watanabe et al.
2021; Roach et al. 2020; Notz and SIMIP Community 2020;
Chemke et al. 2022; Kang et al. 2024; Simpson et al. 2025).
Progress on this endeavor requires robustly quantifying obser-
vational uncertainties and placing recent changes in historical
context with reliable reconstructions of past climate changes.
For example, are the post-1980 trends in tropical SST gra-
dients, the Walker circulation, and polar climates unique over
the historical record, or have such changes occurred often due
to internal climate variability?

Existing SST datasets designed for climate analysis use a
variety of statistical interpolation methods. These methods
have been recently summarized in Modak and Mauritsen
(2023) and Lewis and Mauritsen (2021) and described in de-
tail in a review by Kent and Kennedy (2021), which also ex-
plains the extensive efforts to homogenize time-varying

sources of in situ data. To assess the atmospheric response to
SST and sea ice concentration (SIC) over the historical record
in atmospheric general circulation models (i.e., in AMIP-type
simulations; Eyring et al. 2016; Webb et al. 2017), complete
coverage and monthly resolution of SST/SIC are required.
Combined SST/SIC datasets for this purpose include the
1870–2022 PCMDI/AMIP-II boundary condition (Hurrell et al.
2008) used as the standard for phase 6 of the Coupled Model In-
tercomparison Project (CMIP6; Eyring et al. 2016), 1854–present
NOAA ERSSTv5 (Huang et al. 2017), Met Office Hadley
Centre’s 1870–present HadISST1 (Rayner et al. 2003) and 1850–
2010 HadISST2.1 (no longer maintained; Titchner and Rayner
2014), and the Japanese Meteorological Agency’s 1850–present
Centennial Observation-Based Estimates-SST version 2 (COBE-
SST2) (Hirahara et al. 2014). Kaplan et al. (1998) developed a
landmark SST analysis using optimal interpolation, and since
then, the incomplete data problem has been addressed using krig-
ing (Cowtan and Way 2014), Markov random graphs (Vaccaro
et al. 2021), and machine learning (Kadow et al. 2020) to impute
hybrid air–sea surface temperatures over land and ocean.

Figure 1 depicts the time-evolving observing network of in
situ SST measurements in HadSST4 (Kennedy et al. 2019).
As motivation for this study, we illustrate the spread (1s)
across existing datasets (HadISST1, HadISST2.1, ERSSTv5,
COBE-SST2, and AMIP-II) in their preindustrial-baseline
SST (mean anomaly over years 1870–99) and the spreads in
their SST trends from 1900–79 and 1980–2010. We separate
the satellite era (c. 1980–present) from the earlier warming
because of the variety of studies highlighting and questioning
the peculiarity of recent SST trends (e.g., Fueglistaler and
Silvers 2021; Andrews et al. 2022; Lewis and Mauritsen 2021).
The spatial pattern of uncertainty is influenced by varying
methods of imputation, homogenization of data sources, and
representativeness error in using point observations as esti-
mates of gridscale means. Even after 1980, the data coverage
over the Southern Ocean and southeast Pacific is notably far
from complete, and the interdataset differences in those re-
gions are substantial in recent decades (Figs. 1c,f).

Atmospheric reanalyses address the incomplete data prob-
lem with data assimilation, which uses a weather model’s dy-
namics to constrain the atmospheric state. Data assimilation
(DA) broadly describes the collection of methods that synthe-
size model forecasts with sparse and noisy observations, pro-
ducing posterior analyses and uncertainties that are subject to
the dynamical constraints of the model. DA is computation-
ally intensive; hence, existing reanalyses only assimilate atmo-
spheric observations and only apply dynamical constraints to
the atmospheric component, meaning that the SST and SIC
boundary conditions are prescribed a priori in, for example,
ERA5 (Hersbach et al. 2020; Soci et al. 2024), JRA-55 and
Japanese Reanalysis for three quarters of a century (JRA-3Q)
(Kobayashi et al. 2015; Kosaka et al. 2024), NOAA-CIRES-
DOE’s Twentieth Century Reanalysis (Compo et al. 2011;
Slivinski et al. 2019), NCEP/NCAR reanalysis (Kalnay et al.
1996), MERRA-2 (Gelaro et al. 2017), and Modern Era Rean-
alysis (ModE-RA) (Franke et al. 2017; Valler et al. 2024).

Coupled atmosphere–ocean reanalysis remains a frontier
and formidable challenge in climate research. ECMWF’s
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coupled DA program, the Coupled Reanalysis of the Twenti-
eth Century (CERA-20C) (Laloyaux et al. 2018), is now inac-
tive, and ECMWF no longer hosts its output. NCEP’s CFSR
made a major advance (Saha et al. 2010) by assimilating obser-
vations into atmosphere and ocean components separately and
incorporating coupling with a coupled model during the fore-
cast step}this process is known as “weakly coupled” DA.
The UFS-Replay dataset (NOAA 2024) employs a weakly
coupled “replay” approach (Orbe et al. 2017), in which the
coupled UFS model is nudged toward the existing ERA5 at-
mospheric reanalysis and ORAS5 ocean reanalysis (Zuo et al.
2019). In this study, we will use “strongly coupled” DA, which
(i) ensures that the coupled atmosphere–ocean–ice state is inter-
nally consistent and (ii) synthesizes observational and dynamical
constraints across each component simultaneously.

To circumvent the computational obstacles associated with
DA in fully coupled models, lightweight DA methods have
been developed primarily for paleoclimate reconstruction, as
reviewed by Tierney et al. (2025a). The “offline” DA method
uses a static, uninformed prior from preexisting model output

(e.g., Hakim et al. 2016; Franke et al. 2017; Steiger et al. 2014,
2018; Samakinwa et al. 2021; Tierney et al. 2020; Osman et al.
2021; Annan et al. 2022; Smerdon et al. 2023; Valler et al.
2024; Tierney et al. 2025b). “Online” methods use a time-
evolving prior that is informed by the previous initial condi-
tions produced by data assimilation, thus retaining memory of
past observations. Online DA requires integrating a forecast
model after each assimilation step, which is the main compu-
tational bottleneck.

Data-driven approaches that emulate climate models can
overcome the computational bottleneck. The linear inverse
model (LIM) has been tested in annual-mean DA with prox-
ies over the last millennium (Perkins and Hakim 2021) and
for subseasonal forecasting (Hakim et al. 2022). LIMs have
been applied to study dynamics and predictability of El Niño–
Southern Oscillation (ENSO) (e.g., Penland and Sardeshmukh
1995; Shin et al. 2021; Vimont et al. 2014; Lou et al. 2020; Kido
et al. 2023), meridional modes (Vimont 2012), global surface
temperatures (Newman 2013), SSTs in the North Atlantic
(e.g., Zanna 2012) and North Pacific (e.g., Newman 2007;

FIG. 1. Historical observing network and SST uncertainty in preexisting infilled datasets. (a)–(c) Fraction of months
with in situ data for SST over three time periods in HadSST4, where 1.0 indicates data in every month during the pe-
riod. (d) Illustration of systematic uncertainty in normalized pattern of preindustrial-mean SST anomalies across exist-
ing infilled datasets, calculated as the sample standard deviation (1s) of the 1870–99 mean anomalies across
HadISST1, HadISST2.1, ERSSTv5, PCMDI/AMIP-II, and COBE-SST2, relative to their 1961–90 climatologies; local
anomalies are divided by global-mean anomalies (608S–608N) to highlight uncertainty in spatial patterns. (e),(f) Illus-
tration of systematic uncertainty in patterns of SST trends, calculated as the 1s of local trends across the same datasets
in (d); local SST trends are first divided by the global-mean SST trends (608S–608N) to highlight uncertainty in the pat-
terns, and local values greater than 1.0 indicate that the local 1s is greater than the global-mean trend. Note different
colorbars in (d)–(f).
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Newman et al. 2016; Zhao et al. 2024), the Pacific–North
American pattern (Henderson et al. 2020), hydroclimate
(Coats et al. 2020; Tseng et al. 2021), and sea ice (Brennan
et al. 2023). LIMs are computationally efficient, enabling cou-
pled assimilation of observations across Earth system compo-
nents, e.g., pressure observations in the atmosphere and SST
observations in the ocean can each inform both SST and SLP
in coupled DA. Combining LIMs with data assimilation pre-
sents an opportunity to constrain and quantify uncertainty in
the historical climate record.

Here, we use coupled data assimilation to reconstruct
monthly and globally resolved SST, near-surface air tempera-
ture T, SLP, and SIC over 1850–2023. The novelty of our ap-
proach compared to past reanalyses is that we constrain all
climate fields simultaneously with (i) coupled dynamics and
(ii) observations across climate components. Our DA method
is made computationally tractable by efficient emulators
(LIMs), which are trained on eight CMIP6 models and cap-
ture the essential dynamics for monthly reanalysis. We com-
bine forecasts from LIMs with a Kalman filter to produce a
coupled reconstruction with time-varying uncertainty quanti-
fication. Section 2 describes methods and data, including
LIMs, data assimilation, validation with an out-of-sample
pseudoreconstruction, observations, and comparison datasets.
Section 3 presents the historical reconstruction. Section 4 dis-
cusses the implications of the results for interpreting climate
variability and change and the caveats of the method. Section 5
presents the conclusions.

2. Methods and data

In this section, we describe the reconstruction method, vali-
dation, and data sources. The reconstruction of monthly means
consists of (i) a monthly forecast, for which we use LIMs that
emulate eight CMIP6 models, and (ii) data assimilation in every
month, for which we use the classic Kalman filter (Kalman
1960; Kalnay 2003). We validate the method with a pseudore-
construction of a climate model’s 1850–2014 historical simula-
tion (MPI-ESM1-2-HR), from which we draw observations that
mimic the true observing network.

a. Linear inverse models

Anomalies around an equilibrium state in the nonlinear cli-
mate system can be approximated as a stochastically forced,
linear dynamical system (e.g., Hasselmann 1976; Penland and
Sardeshmukh 1995; Penland 1996):

dx
dt

5 Lx 1 Sh, (1)

where x is a state vector of N principal components of SST, T,
SLP, and SIC; L is an N 3 N linear operator representing the
deterministic dynamics; and Sh approximates the unresolv-
able nonlinear dynamics as stochastic forcing with an N 3 N
noise-amplitude matrix S and a vector h of independent,
Gaussian white noise with unit variance and length N.

LIMs typically assume stationary statistics, but Shin et al.
(2021) extend the LIM framework to include monthly varia-
tions in the dynamics. The monthly, or “cyclostationary”
LIM, has been applied to ENSO (Shin et al. 2021; Vimont

et al. 2022; Kido et al. 2023). We build on this recent work
and use cyclostationary LIMs to model global SST, T, SLP,
and SIC. We use the fixed-phase approach (Shin et al. 2021;
OrtizBeviá 1997) to train the 12 Lj operators in the cyclosta-
tionary LIM, where j indicates the month:

Lj 5 t21 log[Cj(t)Cj(0)21], for j 5 1, 2, …, 12: (2)

The Cj(t) and Cj(0) are the t-lag and zero-lag covariance matri-
ces of x for month j, and t 5 1 month in all of the following
equations. The stochastic amplitude matrices Sj are estimated
from the fluctuation–dissipation relation of (1) (Penland and
Matrosova 1994):

dCj(0)
dt

5 LjCj(0) 1 Cj(0)LT
j 1 Qj, (3)

where Qj 5 SjS
T
j . We follow Shin et al. (2021) in estimating

the cyclostationary Qj as

Qj 5
Cj11(0) 1 Cj21(0)

2Dt
2 [LjCj(0) 1 Cj(0)LT

j ], (4)

with Dt 5 1 month. Before computing Lj and Qj, we take the
3-month running means of Cj(t) and Cj(0), e.g., we estimate
Cj(t) ’ hCj21(t), Cj(t), Cj11(t)i, where angle brackets denote
an equal-weighted average (Shin et al. 2021). As in previous
LIM studies (e.g., Penland 1996), we remove any negative ei-
genvalues in Qj and rescale remaining eigenvalues to conserve
the original variance.

The LIM produces forecasts at lead t 5 1 month from inte-
grating (1) in time as

x(t 1 t) 5 Gjx(t) 1 n, (5)

where Gj 5 exp(Ljt)5 Cj(t)Cj(0)21. The integrated stochastic
term n equals zero in a deterministic forecast, such as the
prior-mean forecast in the Kalman filter as described below.

The forecast equation for the error covariance, assuming
no correlation between error and state, is

P(t 1 t) 5 GjP(t)GT
j 1 Nj(t): (6)

We forecast the full covariance matrix with the LIM, instead
of estimating it from ensemble members, because this ap-
proach is exact for a given LIM. It is equivalent to using an in-
finite ensemble. To solve for Nj(t), we extend the logic that
applies to the stationary LIM (Hakim et al. 2022; Penland
1989) for the cyclostationary case. Equation (6) must be valid
for any month’s initial condition, including Cj(0), from which
the monthly forecast must arrive at Cj11(0) because the statis-
tics are cyclostationary, therefore,

Nj(t) 5 Cj11(0) 2 GjCj(0)GT
j : (7)

We train separate LIMs to emulate the following eight CMIP6
models: CESM2, GFDL-ESM4, HadGEM3-GC3.1-LL, Seoul
National University (SNU) Atmosphere Model version 0 with
a Unified Convection Scheme (SAM0-UNICON), U.K. Earth
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System Model, version 1, low resolution (UKESM1.0-LL),
NorESM2-LM, EC-Earth3, and the Energy Exascale Earth
System Model, version 2 (E3SMv2.0). Our selection of models
is informed by Lou et al. (2023), who found that this subgroup
performs best in an analog method for ENSO forecasting,
although we make two changes: we remove HadGEM3-
GC3.1-MM to prevent having two versions of HadGEM3, and
we substitute E3SMv2.0 (Qin et al. 2024) for Community
Integrated Earth System Model (CIESM) because of issues
simulating sea ice in CIESM (Lin et al. 2020). For training
data, we use preindustrial-control simulations with historical
(1850–2014) simulations appended (summary in appendix A).
LIMs are trained separately for each model using monthly
mean anomalies, and each LIM has a minimum of 665 years of
training data (5001 preindustrial and 165 historical years).
While approximately 100 years of training data are sufficient
for a tropics-only cyclostationary LIM (Shin et al. 2021), global
LIMs require a longer record. Thus, long preindustrial simula-
tions are essential for training, and we find that appending the
historical simulations expands the footprint of regions with
nonzero SIC variability in the training data, which improves
reconstruction of SIC.

We regrid all training data bilinearly to 28 resolution (963 144
latitude–longitude grid). For consistency with observations,
which are expressed as anomalies relative to a 1961–90 clima-
tology, we remove the mean and climatology in each grid cell
calculated over 1961–90 for each model. Separately for each
model and state variable, we compute EOFs area weighted by
the square root of the cosine of latitude for SST, T, SLP,
Northern Hemisphere (NH) SIC, and Southern Hemisphere
(SH) SIC. We retain approximately 85% of each field’s vari-
ance in the truncated state. We form each model’s standard-
ized state vector from its principal components xk as

x 5

xSST/sSST

xT /sT

xSLP/sSLP

xSICNH
/sSICNH

xSICSH
/sSICSH

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where s2
k is the retained variance after EOF truncation of

field k. We use the standardized state vectors x to compute co-
variance matrices for each model, and we project into and out
of the LIM basis by storing the EOFs and scale factors sk for
each field. Each LIM is run independently in parallel through
the data assimilation framework.

b. Data assimilation

Given a prior forecast of the state’s monthly mean xf and
error covariance Pf, we assimilate observations to produce the
posterior analysis xa and Pa using the Kalman filter:

xa 5 xf 1 K(y 2 Hxf ), (8)

Pa 5 [I 2 KH]Pf , (9)

K 5 PfH
T[HPfH

T 1 R]21, (10)

where K is the Kalman gain, y is the vector of observations, H
is the linear observation operator, and R is the observation er-
ror covariance. After solving (8)–(10) for a given month, we
forecast the next month from (5), with n5 0, and (6).

Our method is “strongly coupled online DA,” where strongly
coupled means that we assimilate observations concurrently
across the atmosphere–ocean–ice system, and all fields influence
each other through cross-component covariances. “Online”
means that we use a forecast model with the previous assimila-
tion step’s results as initial conditions to inform the prior. Be-
cause this method uses the classic Kalman filter and propagates
Pf exactly, we avoid the sample error and localization issues
that arise when estimating Pf in an ensemble Kalman filter
(Evensen 1994; Houtekamer and Zhang 2016). However, en-
semble-
member trajectories are needed to analyze statistics of temporal
variability, and this variability must be constrained by dynamics
rather than sampled independently (Emile-Geay et al. 2025).
We solve this problem with a modified version of the ensemble
Kalman filter, described subsequently, that has no impact on
the mean or covariance, (8) and (9), but rather simply provides
sample estimates from the posterior distribution.

We generate ensemble members using the perturbed-observation
versions of the ensemble Kalman filter (Houtekamer and
Mitchell 1998; Burgers et al. 1998), except we use the exact
prior covariance forecast from the classic Kalman filter [(6) and
(9)]. For each LIM, we initialize 200 ensemble members in
January 1850 with random draws from a multivariate-normal
distribution with covariance C1(0). Each ensemble member is
updated using (8), with xnf corresponding to ensemble member
n in place of the ensemble mean, and yn is a multivariate-
normal random draw of the observations with mean y and
covariance R. After the assimilation, each xna is advanced to the
next month using (5). The noise term n in (5) becomes a ran-
dom draw from Nj(t) in (7) for each ensemble member. Be-
cause our LIMs are built to forecast monthly means, we can
draw from the distributions of the monthly statistics rather than
stochastically integrating (Penland and Matrosova 1994) each
ensemble member.

An additional benefit of the ensemble is that we can propa-
gate temporally correlated observation errors that are associ-
ated with uncertainties in bias corrections. For example,
Hadley Centre SST, version 4 (HadSST4) (described below),
provides a 200-member ensemble of monthly SST observa-
tions to represent temporally correlated errors (Kennedy et al.
2019). To incorporate these errors, we let y vary across the en-
semble members, but each of our 200 ensemble members xn is
paired at every time step with the corresponding ensemble
member n from the HadSST4 ensemble.

c. Observations

We use four sources of observations corresponding to each of
the four state variables (SST, T, SLP, SIC). All observations are
anomalies relative to a 1961–90 climatology, which is the period
chosen by Kennedy et al. (2019) and Osborn et al. (2021).

SST observations are from HadSST4 version 4.0.1.0
(Kennedy et al. 2019), provided by the Met Office Hadley
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Centre on a 58 3 58 grid. HadSST4 quality controls and
corrects biases in the in situ measurements from ICOADS
3.0.0 (1850–2014) and ICOADS 3.0.1 (2015–present), the
central database of ship records (Freeman et al. 2017).
HadSST4 provides noninfilled data as monthly means span-
ning 1850–present, and ship coverage varies substantially
over time (Fig. 1). Measurement and sampling errors are
provided for every grid cell and month, and error covariance
matrices are provided that estimate the spatially correlated er-
rors. We include these sources of error in R. Temporally corre-
lated errors from uncertain bias corrections are estimated with
a 200-member ensemble of observations, and we account for
these errors with our ensemble DA method, described in
section 2b.

Observations of near-surface air temperature T over land
are from Climatic Research Unit Temperature (CRUTEM5),
version 5.0.2.0 (Osborn et al. 2021). The weather station data
are quality controlled, bias corrected, and provided as nonin-
filled monthly means with error estimates on a 58 3 58 grid.
We include CRUTEM5’s time-varying measurement and
sampling errors in R.

SLP observations are from ICOADS enhanced release 3.1
for 1850–2014 and release 3.0.2 for 2015–23 (Freeman et al.
2017), which only includes marine data. Ideally, we would as-
similate terrestrial SLP observations, but the International
Surface Pressure Databank (ISPD) dataset (Cram et al. 2015)
of surface pressures does not have a homogenized product
available that combines data at various elevations into a
gridded dataset of monthly means. The lack of direct con-
straints on terrestrial SLP is a limitation of our reconstruction;
hence, we focus our analysis on marine SLP. ICOADS marine
SLP data are provided as monthly means on a 28 3 28 grid,
along with the number of observations nobs in each month
and the intramonth standard deviation s of the observations
in each grid cell. The baseline climatology for anomalies is
from Hersbach et al. (2020). There are a large number of SLP
observations due to the finer grid of ICOADS compared to
HadSST4. We eliminate observations with nobs , 5, which are
expected to have a low signal-to-noise ratio. For months that
have data in more than 3000 grid cells, we mask up to 40% of
the values between 258S and 608N using random sampling.
These limits increase computational efficiency of the assimila-
tion and maintain a reasonable balance between the number
of SLP and SST observations; otherwise, there would be ap-
proximately 5 times as many SLP as SST observations. Valler
et al. (2024) also reduce the number of ICOADS observations
of SLP in their atmospheric reanalysis and set a similar
threshold of nobs 5 10 per grid cell. Past studies identified a
bias in ICOADS SLP data before 1870, which is discussed in
Slivinski et al. (2019), Freeman et al. (2017), and Allan and
Ansell (2006). NOAA 20CRv3 performed a bias correction of
the pre-1870 SLP observations, so we substitute the 1850–70
SLP from ICOADS with the collocated values from NOAA
20CRv3. ICOADS does not provide an estimate of measure-
ment and sampling errors which comprise the diagonal terms
in R. As described in appendix B, we estimate R from the in-
tramonth spread in individual observations and the variance
across neighboring observations.

Sea ice observations are provided by the NOAA/NSIDC
Climate Data Record (CDR) of Passive Microwave Sea Ice
Concentration, version 4, from November 1978 to September
2023 and near–real time, version 2, for October 2023 to
December 2023 (Meier et al. 2021b,a). We coarsen the obser-
vations from 25 km to 28 resolution. At each time step in the
assimilation with satellite data, we use a subset of the avail-
able data, which has nearly complete coverage of the polar re-
gions. We retain all observations with SIC ranging from 0.01
to 0.98 and 40% of the remaining observations using random
sampling. For measurement and sampling errors that form
the diagonal terms in R, we use the provided standard devia-
tions of daily values, but we set the minimum error to 0.01. As
described in appendix B for SLP, these intramonth standard
deviations approximate the monthly mean error. For SIC,
they are calculated across both the NASA team and bootstrap
algorithms, sampling the systematic error across data-processing
methods. Errors are small in open water and pack ice but are
often between 0.3 and 0.5 in partial ice cover. We do not have
satellite data for sea ice from 1961 to 1978, but we require a
full climatology from 1961 to 1990 to calculate the SIC anoma-
lies relative to a baseline that is consistent with the HadSST4
anomalies. The mean of the eight models used for LIM train-
ing agrees well with observations over the satellite era (Sup-
porting Information of Roach et al. 2020; Notz and SIMIP
Community 2020), so we combine the multimodel mean of the
eight historical simulations from January 1961 to November
1978 with the satellite data from December 1978 to December
1990, and we use the merged climatology from 1961 to 1990 as
the reference for SIC anomalies. Because solutions to (8) are
not restricted to SIC between zero and one, we use the clima-
tology in postprocessing to ensure that SIC is between zero
and one.

d. Validation: Pseudoreconstruction of an out-of-
sample model

To test our method, we mimic the real reconstruction problem
and attempt to reconstruct the 1850–2014 historical simulation
from a climate model. Our target model is MPI-ESM1-2-HR,
ensemble member r1i1p1f1 (Mauritsen et al. 2019). We have
chosen MPI-ESM1-2-HR because it is a difficult test of the
method given that, unlike nearly all other models, it has cooling
in the Southern Ocean from 1980 to 2014. It also has a low bias
in Antarctic sea ice (Roach et al. 2020) and substantially differ-
ent ENSO statistics and radiative feedbacks (Bloch-Johnson
et al. 2024) compared to the models used for LIMs and priors in
the data assimilation. The pseudoreconstruction’s target is out of
sample because MPI-ESM1-2-HR is not used for LIM training;
the dynamics of the target model are unknown to our eight fore-
cast models.

We draw pseudo-observations from the target simulation at
the same times and locations where real observations are
available for SST, T, SLP, and SIC. Random errors are added
to the pseudo-observations by sampling from the real obser-
vation errors in R. Note that real observations also have
biases and unknown, unquantified errors which make the real
reconstruction more challenging than this test. On the other
hand, the LIMs used as model priors are selected based on
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their ability to collectively emulate reality rather than the tar-
get model of the pseudoreconstruction.

Figure 2 shows time series representing climate variability
from the pseudoreconstruction. The ensemble mean is calculated
as the grand mean across all 1600 ensemble members (8 LIMs3
200 members), and the ensemble shading spans the 17th–83rd
percentiles. We note that any one of the eight LIM-DA systems
may not have a posterior distribution that spans the true state by
itself. However, the grand ensemble of posterior distributions
from all eight LIM-DA systems, which includes the spread from
model error, generally spans the target (Fig. 2). Because the
grand ensemble represents eight separate DA systems, its dis-
tribution is non-Gaussian.

The metrics in Fig. 2 are calculated as follows, with anoma-
lies representing the departures from the 1961–90 climatologi-
cal annual cycle unless stated otherwise:

• Atlantic multidecadal variability (AMV) is the monthly mean
SST anomaly in the North Atlantic (08–608N, 808W–08) minus
the global mean; the mean of the index from 1900 to 1970 is re-
moved before plotting (Trenberth and Shea 2006).

• The Pacific decadal oscillation (PDO) is the leading EOF
of the monthly mean SST anomaly in the North Pacific
(208–708N) after removing the global mean (Newman et al.
2016).

• Niño-3.4 is the monthly mean SST anomaly over 1708–1208W
and 58S–58N, with the 30-yr running mean removed.

• The zonal SST gradient in the tropical Pacific is the mean SST
anomaly in the west (808–1508E) minus the east (1608–808W),
spanning 58S–58N (e.g., Heede and Fedorov 2023).

• SST#, which denotes the tropical SST contrast, is the mean
of the warmest 30% of all tropical SSTs (308S–308N) minus
the mean tropical SST, and the 1961–90 mean is removed

FIG. 2. Validation by pseudoreconstruction: time series. Values from the target model, the 1850–2014 historical simulation from MPI-
ESM1-2-HR, are shown in orange. Results from data assimilation are shown in blue, showing mean of 1600 ensemble members; shading
denotes ensemble 17th and 83rd percentiles, i.e., likely range. (a) AMV with 10-yr low-pass filter and monthly values as thin lines.
(b) PDO with 6-yr low-pass filter and monthly values as thin lines. (c) Monthly Niño-3.4 with 30-yr running mean removed. (d) Rolling
30-yr standard deviation of Niño-3.4. (e) Zonal gradient of tropical Pacific SST with 10-yr low-pass filter. (f) Tropical SST contrast, SST#,
5-yr running mean. (g) GMSAT with 10-yr low-pass filter and monthly values in thin lines. (h) Zonal mean of Southern Ocean SST
(508–708S) with 10-yr low-pass filter. (i) Walker circulation with 10-yr low-pass filter. (j) SAM with 10-yr low-pass filter. (k) Total area of
Arctic and (l) Antarctic sea ice, with 12-month running mean applied. The R2 and NSE are based on the filtered metrics shown (see Fig. S5
for unfiltered results frommonthly data). Calculation of metrics is described in methods, section 2d.
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(Fueglistaler 2019). We note that SST# requires actual
SSTs, not just anomalies. To estimate SST# for the pseu-
doreconstruction, we add reconstructed anomalies to the
target model’s 1961–90 climatology, which assumes outside
knowledge of the target’s climatology. For the actual re-
construction of SST#, we add the reconstructed anomalies
to the 1961–90 climatology from HadISST2.1’s ensemble
mean. We show the 5-yr running mean of SST# for consis-
tency with Fueglistaler and Silvers (2021).

• Southern Ocean SST is the zonal-mean SST anomaly from
508 to 708S (Doddridge and Marshall 2017).

• Global-mean near-surface air temperature (GMSAT) is the
global-mean T anomaly.

• The Walker circulation, measured by the zonal SLP gradient,
is the mean SLP anomaly in the west Pacific (1308–1508E) mi-
nus the central-east Pacific (1608–1208W), spanning 58S–58N
(e.g., Heede and Fedorov 2023).

• The Southern Annular Mode (SAM) is the standardized
zonal-mean SLP anomaly at 408S 6 28 minus the standard-
ized zonal-mean SLP anomaly at 658S 6 28 (Gong and
Wang 1999); the reference period for standardization is
1961–90, and each month is standardized separately.

• Sea ice area is the sum of the products of SIC and gridcell
area; a common land mask is used when comparing ice
area across various SIC datasets.

Most large-scale metrics are reconstructed with accuracy.
We assess performance by the Pearson correlation R, the frac-
tion of variance explained R2, and the Nash–Sutcliffe effi-
ciency (NSE):

NSE 5 1 2
∑(xi 2 x̂i)2
∑(xi 2 x)2 ,

which accounts for the relative phasing of the target time se-
ries (xi) versus the reconstructed time series (x̂i), the signal
amplitude, and bias. The NSE has an upper bound equal to
one and can become negative from biases in the mean or
amplitude of variability (Nash and Sutcliffe 1970). We find
R2 . 0.80 for the AMV, PDO, Niño-3.4, the 30-yr rolling 1s
of Niño-3.4, the zonal SST gradient in the tropical Pacific,
GMSAT, Southern Ocean SST, the Walker circulation (zonal
SLP gradient), the SAM, and Arctic ice area. The tropical
SST contrast, SST#, has the lowest R2 at 0.31.

The reconstruction of the Walker circulation has a damped
amplitude compared to the target, which is due to the EOF
truncation of SLP in the LIM training. We show an additional
version of the target model’s Walker circulation, which is cal-
culated after truncating the target’s SLP into the leading
30 EOFs. Truncation is expected to affect tropical SLP be-
cause the variance in tropical SLP is low compared to the var-
iance at higher latitudes, but truncation does not appear to
have a substantial influence on other metrics.

Antarctic sea ice has R2 5 0.50 and is biased high in the re-
construction before 1979. The reason for this bias is that the
target model is biased low relative to the multimodel mean of
the LIMs and relative to the satellite record (Roach et al.
2020). There are decadal periods of abrupt ice loss in the

target model which are not captured in the reconstruction.
These ice loss events are associated with brief warming epi-
sodes in Southern Ocean SST (Fig. 2h), which are also not de-
tected in the reconstruction. While we do not know whether
such Antarctic ice loss events happen in nature, we note that
our pseudoreconstruction of MPI-ESM1-2-HR does not cap-
ture its ice loss events when observations are very sparse.
Reasons for this deficiency could be (i) the LIMs used as
model priors are too different from the target model, and
sparse observations cannot overcome those differences, and/
or (ii) the ice loss events do not covary with available observa-
tions, and even a perfect model would be unable to recon-
struct them from the data. Despite missing these decadal
warmings, the lower-frequency variability in Southern Ocean
SST and the SAM is captured by the reconstruction.

Figure 3 shows the pattern of trends in annual-mean SST
for 1900–79 and 1980–2014. Local trends are divided by the
global-mean trend to emphasize the patterns. We also show
the reconstruction’s ensemble spread (1s) in trend patterns,
which highlights regions of elevated uncertainty. Note that
SST is defined in all ocean grid cells at all times, even when
SIC is 100%, so there are no missing values in the SST field. It
is important to recall that observations in the Southern Ocean
and southeast Pacific are sparse even after 1980 (Fig. 1c),
which is evident in our uncertainty quantification.

To further illustrate the uncertainty, we show trends from
individual ensemble members (Figs. 3c,g). These ensemble
members show more cooling in the Southern Ocean than is
seen in the ensemble mean. The key point, which is relevant
to the next section on the real reconstruction, is that our DA
framework is capable of reconstructing cooling over the
Southern Ocean, even though the models used to train the
LIMs do not show post-1980 cooling over the Southern Ocean
in their historical simulations. Model biases can often be over-
come if there are enough observations, and the LIM dynamics
allow for cooling trends in the Southern Ocean. However,
due to poor data coverage and quality in the Southern Ocean,
SST trends in this region should be interpreted with caution.

Figure 4 shows trends in annual-mean SLP for 1900–79 and
1980–2014. We only assimilate marine SLP observations; hence,
terrestrial SLP is expected to deviate from the target model.
Large-scale patterns are consistent, but the errors in the magni-
tude of trends are substantial, especially over the Southern
Ocean. Sparse observations and the unique physics of the target
model compared to the forecast models results in considerable
uncertainty. The uncertainty indicates that many ensemble
members have local trends that differ substantially from
the target model, and therefore, accurately capturing the
trend pattern requires considering the mean across the
ensemble.

For additional validation, we show the spatial distribution of
correlation and Nash–Sutcliffe efficiency for multiple time peri-
ods in Figs. S1 and S2 in the online supplemental material. In
Figs. S3 and S4, we also show the correlation and Nash–Sutcliffe
efficiency when using only one LIM instead of the multimodel
mean of eight LIMs, which illustrates the major improvements
from usingmultiple models in the reconstruction (Amrhein et al.
2020; Parsons et al. 2021). Additionally, we show monthly
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breakdowns of R2 and NSE calculated without low-pass filtering
the monthly resolved results for each of the metrics in Fig. 2
(Fig. S5). The results show some seasonal variation in skill, which
depends on the metric considered.

e. Observation validation from Desroziers statistics and
HadSST4 comparison

For the reconstruction using real observations (section 3),
we also evaluate performance using the Desroziers statistics

of the DA system (Desroziers et al. 2005) as described in
Slivinski et al. (2021):

RMSEactual 5
1

Nobs
∑
Nobs

j51
(yj 2 [Hxf ]j)2

[ ]1/2
, (11)

RMSEexp 5
1

Nobs
∑
Nobs

j51
(Rj 1 [HPfH

T]j)
[ ]1/2

, (12)

FIG. 3. Validation by pseudoreconstruction: SST trends. (a) Normalized 1900–79 ensemble mean of trends in the
annual mean from data assimilation; local trends are divided by the global-mean trend to show SST patterns; (top
right) the global-mean trend before normalization, scaled by the number of years to show trend (8C) per 80 years.
(b) As in (a), but showing trends in the pseudoreconstruction’s target model, MPI-ESM1-2-HR’s historical simulation.
(c) As in (a), but shows an individual member from ensemble data assimilation. (d) Uncertainty in results from data
assimilation, calculated as the sample standard deviation (1s) across 1600 ensemble members’ normalized trends; val-
ues greater than 1.0 indicate that local 1s is greater than the global-mean trend; (top right) the global mean of the 1s
in local trends before normalization. (e),(f) As in (a)–(d), but for 1980–2014.
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where j is the observation index for each observation in a given
month, yj is the observation, [Hxf]j is the forecast prior mean of ob-
servation j, and the corresponding Rj and [HPfH

T]j in (12) are the
observation and forecast errors associated with observation j.
The RMSEactual is related to the innovations from (8) and
compares the forecasts with observations that have not yet
been assimilated, while RMSEexp is related to the innovation
covariance in (9). The results described below are shown in
Fig. S6 and illustrate the calibration of the DA system.

If the calibration ratio RMSEactual/RMSEexp ’ 1, the sys-
tem is well calibrated (Slivinski et al. 2021; Houtekamer and

Mitchell 1998). We group the data into 208–908N (NH), 208S–
208N (tropics), and 208–908S (SH), and we compute the cali-
bration ratio using 30-yr running means of the RMSE values,
and then we take the mean of the ratio over 1850–2023. For
SST, we find calibration ratios of 1.2 (NH), 1.1 (tropics), and
1.2 (SH). These ratios are close to 1 and confirm that the DA
system is performing well for SST. Calibration ratios for SLP
are 0.9 (NH), 0.7 (tropics), and 0.8 (SH), indicating that the
expected errors are larger than the actual errors due to exces-
sive ensemble spread. For T, calibration ratios are 1.1 (NH),
1.6 (tropics), and 1.3 (SH). Although tropical SST is very well

FIG. 4. Validation by pseudoreconstruction: trends in SLP. (a) The 1900–79 ensemble mean of trends in the annual
mean from data assimilation, scaled by the number of years to show trends (hPa) per 80 years; (top right) the global-
mean trend (Pa) per 80 years. (b) As in (a), but showing trends in the pseudoreconstruction’s target model, MPI-
ESM1-2-HR’s historical simulation. (c) Error, shown as mean reconstruction minus target; RMSE shown in top right.
(d) Uncertainty in results from data assimilation, calculated as the sample standard deviation (1s) across trends from
1600 ensemble members; (top right) the global mean of 1s in local trends. (e),(f) As in (a)–(d), but for 1980–2014.
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calibrated with a ratio of 1.1, the expected errors are larger
than RMSEactual for tropical SLP (ratio 0.7) and smaller than
RMSEactual for tropical air temperatures over land (ratio 1.6).
Overall, the Desroziers statistics suggest the DA system is
well calibrated, especially for SST.

To illustrate observation validation at specific locations, we
show sample time series comparing the assimilated HadSST4
observations with the real DA results (from section 3) at
seven ocean locations (Figs. S7–S14). Overall, the results
show that errors in the reconstruction relative to the observa-
tions are in good agreement with observation error. When
outliers appear in the data, their influence is limited by the
DA prior and the other observations that are simultaneously
assimilated. Figures S8–S14 also illustrate the time-varying
observation density and uncertainty at various locations, rein-
forcing the summary calibration results in that the recon-
structed ensemble mean and spread are consistent with the
assimilated observations and their errors.

f. Comparison data

We include a variety of datasets for comparison with our
reconstruction. For SST, we focus on datasets which are glob-
ally complete and have monthly resolution. We include
PCMDI/AMIP-II (Hurrell et al. 2008), which was used for
CMIP6’s AMIP simulations, NOAA ERSSTv5 (Huang et al.
2017), HadISST1 (Rayner et al. 2003), HadISST2.1 (no longer
maintained; Titchner and Rayner 2014), and COBE-SST2
(Hirahara et al. 2014). The statistical infilling in these prod-
ucts is briefly described by Modak and Mauritsen (2023) and
Lewis and Mauritsen (2021), with further detail in Kent and
Kennedy (2021). All products are regridded to the 28 resolu-
tion of our reconstruction.

For SLP, we show gridded reanalyses from ERA5 (1950–
present) (Hersbach et al. 2020), NOAA/CIRES/DOE
20CRv3 (1836–2015) from Slivinski et al. (2019), and NCEP/
NCAR (1948–present) from Kalnay et al. (1996), all re-
gridded to 28 and monthly resolution. We also include an
older product, HadSLP2 infilled (Allan and Ansell 2006).
HadSLP2 is no longer maintained, but it provides monthly
means of SLP, and its noninfilled product would be a compan-
ion to HadSST4 if updated. We include an offline-DA recon-
struction of the Walker circulation using proxy data, labeled
F23 (Falster et al. 2023). We include the SAM from multiple
reconstructions using offline DA (O’Connor et al. 2021;
Dalaiden et al. 2021; King et al. 2023) and regression (Fogt et al.
2009), labeled as O21, D21, K23, and F09.

For SIC, we show HadISST2.2 (Titchner and Rayner 2014),
HadISST1 (Rayner et al. 2003), and AMIP-II (Hurrell et al.
2008), which is largely based on HadISST1. The satellite re-
cord from NOAA/NSIDC CDR (Meier et al. 2021b, 2021a) is
shown from November 1978 to December 2023. We include
the proxy-based reconstruction of Arctic SIC from Brennan
and Hakim (2022), labeled BH22, which has annual rather
than monthly resolution. We regrid all SIC data to 28 resolu-
tion. When comparing total anomalies in sea ice area, we re-
strict the comparison to only include grid cells that have SIC
data in every dataset. Otherwise, one dataset may have large

anomalies where another dataset has missing values from dif-
ferent land masks, skewing the comparison.

For GMSAT, we compare with HadCRUT5 (Morice et al.
2021) and Berkeley Earth Surface Temperatures (BEST;
Rohde et al. 2013). Note that our reconstruction is of the
near-surface air temperature, while the comparison datasets
are hybrids of air temperature over land and SST over ocean.

Notably, various datasets can impact one another. The
lower boundary condition in ERA5 is the SST from HadISST2
until 2007 and sea ice from HadISST2 until 1979 (Hersbach
et al. 2020). NOAA 20CRv3 also uses HadISST2 sea ice over
1836–2015, HadISST2 SST after 1981, and SODAsi.3 SST ad-
justed to HadISST2 climatology before 1981 (Slivinski et al.
2019; Giese et al. 2016). An SST dataset, ERSSTv5, also uses
HadISST2 sea ice to adjust its SST values in the Southern
Ocean (Huang et al. 2017). These are examples of how uncer-
tainty in one dataset can affect others.

3. Historical reconstruction

In this section, we share the results of our reconstruction of
SST, T, SLP, and SIC from coupled atmosphere–ocean data as-
similation with linear inverse models. We show time series, spa-
tial trends of SST, SLP, and SIC, and El Niño of 1877/78.

a. Variability over 1850–2023

Figure 5 shows time series of the real reconstruction, as for
the pseudoreconstruction (Fig. 2). The AMV and PDO are
similar across datasets for most of the historical record, as de-
scribed for the PDO in Newman et al. (2016), but PDO uncer-
tainty is notably larger from 1850 to 1900.

Niño-3.4 shows substantial interdataset spread before 1875,
but the most interesting ENSO feature is the low-frequency
evolution of ENSO variance in Fig. 5d, measured by the 30-yr
rolling 1s of Niño-3.4. Recent studies have argued for in-
creased ENSO variance with global warming (e.g., Cai et al.
2021, 2023), although other work suggests that ENSO vari-
ance could decrease with long-term warming (Callahan et al.
2021), and uncertainties in future ENSO variance have sub-
stantial implications for global-scale climate predictability
(Amaya et al. 2025). In our results, ENSO variance was at a
local maximum over 1875–1900, decreased to a local mini-
mum over 1930–60, and subsequently trended higher to the
present. Overall, Fig. 5d suggests considerable centennial-
scale power in ENSO variance.

Tropical SST gradients are diagnosed using two measures.
The Pacific zonal SST gradient (Fig. 5e) shows that the magni-
tude of the strengthening trend from 1980 to 2023 is not clearly
distinguishable from past variability, such as the weakening
from 1875 to 1905. The long-term strengthening trend since
1900 has also been a focus of many studies (e.g., Cane et al.
1997; Karnauskas et al. 2009; Deser et al. 2010b; Solomon and
Newman 2012; Coats and Karnauskas 2017; Seager et al. 2022;
Lee et al. 2022), but 1900–05 has the weakest zonal gradient
during the historical record, and the gradient in 1890 is compa-
rable to 2023. However, the SST# metric (Fig. 5f), representing
the contrast between the warmest tropical SSTs and the tropi-
cal mean (Fueglistaler 2019; Fueglistaler and Silvers 2021),
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shows a consistent strengthening from 1975 to the present.
The persistent 1975–2023 trend in SST# may indeed be distinct
compared to the variability before 1975, but further investiga-
tion is needed.

The Pacific Walker circulation (zonal SLP gradient) ap-
pears to be dominated by stationary decadal variability over
the full historical record (Fig. 5i). Our reconstruction does not
show a trend toward weakening of the Walker circulation
over the twentieth century (Vecchi et al. 2006; Tokinaga et al.
2012), and the strengthening from c. 1979–2014 (e.g., Chung
et al. 2019; L’Heureux et al. 2013; Watanabe et al. 2023, 2024)
appears within the range of variability prior to 1975. Heede
and Fedorov (2023) found large recent changes in the zonal
SLP gradient in the NCEP/NCAR reanalysis, but that prod-
uct may be an outlier over 2005–20 (Fig. 5i).

Our reconstruction of the SAM has relatively small ensemble
spread compared to the spread across other products (Fig. 5j).
Notably, the pre-1980 disagreement across reanalyses and other
reconstructions is larger than the decadal variability in any one
product. Spurious trends in Southern Hemisphere SLP have
been identified in reanalyses poleward of 608S during the early
twentieth century and c. 1950 due to the general paucity of data
over much of the Southern Hemisphere (Schneider and Fogt
2018; Fogt and Connolly 2021; Laloyaux et al. 2018). Local ob-
servations in the SAM region are sparse throughout most of the
historical record. Consequently, our SAM reconstruction is pri-
marily constrained by remote observations of SLP, SST, and T,
with the dynamics of the LIMs acting to connect those remote
observations to the SAM region’s SLP. Many studies have
highlighted the positive trend in the SAM from c. 1980 to the

FIG. 5. Climate variability over 1850–2023. Results from data assimilation are shown in blue, showing mean of 1600 ensemble members;
shading denotes ensemble 17th and 83rd percentiles, i.e., likely range. Note that legend for SST datasets in (a) applies to (a)–(f), and
reused line colors in SLP, T, and SIC panels do not necessarily indicate consistency with the SST datasets. (a) AMV (SST) with 10-yr low-
pass filter. (b) PDO (SST) with 6-yr low-pass filter. (c) Monthly SST in Niño-3.4 region with 30-yr running mean removed. (d) Rolling
30-yr standard deviation of Niño-3.4 in (c). (e) Zonal gradient of tropical Pacific SST with 10-yr low-pass filter. (f) Tropical SST contrast
SST#, 5-yr running mean. (g) GMSAT with 10-yr low-pass filter and monthly values from DA as thin line. (h) Zonal mean of Southern
Ocean SST (508–708S) with 10-yr low-pass filter. (i) Walker circulation, i.e., zonal SLP gradient across tropical Pacific, with 10-yr low-pass
filter. (j) SAM (SLP) with 10-yr low-pass filter. (k) Total area of Arctic and (l) Antarctic sea ice, with 12-month running mean applied,
and showing comparison satellite data from NOAA/NSIDC CDR. Calculation of metrics is described in section 2d, and comparison data
are summarized in section 2f.
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present (e.g., Thompson and Solomon 2002; Marshall 2003;
Polvani et al. 2011; Swart et al. 2015; Banerjee et al. 2020; Fogt
and Marshall 2020), but some datasets in Fig. 5j show longer-
term positive trends, possibly spanning the entire twentieth cen-
tury (O’Connor et al. 2021; Dalaiden et al. 2021; Slivinski et al.
2019; Allan and Ansell 2006). Our results indicate that the re-
cent trend only extends from approximately 1970 to the present,
and the trends are most notable in DJF (Fig. S16). There ap-
pears to be another prolonged positive trend from 1850 to 1920
in our reconstruction but not in any of the comparison data,
and this SAM trend aligns with SST cooling in the Southern
Ocean over the same period. Brönnimann et al. (2024) analyzed
newly digitized ship records from 1903 to 1916 and also found a
positive SAM index and pronounced surface cooling over the
Southern Ocean during the early 1900s.

Sea ice from data assimilation (Fig. 5k,l) exhibits major dif-
ferences compared to the HadISST and AMIP-II datasets,
which have been used to assess the atmospheric response to
SIC changes over the historical record. Over much of the his-
torical record, these datasets have constant values at inferred
climatologies. There are also differences in the satellite era
due to uncertainties in data processing and discontinuities
in satellite sources (e.g., Eisenman et al. 2014; Buckley et al.
2024), which are responsible for the spurious high values in
Antarctic sea ice from 2009 to 2011 in HadISST1 and AMIP-II
(Screen 2011) evident in Fig. 5l.

For Arctic sea ice, the main difference across datasets re-
lates to the early twentieth-century warming (Brönnimann
2009; Hegerl et al. 2018). HadISST1 and AMIP-II do not
have any signal of the early twentieth-century warming in sea
ice area. Our reconstruction shows a loss of 0.5 6 0.1(1s) mil-
lion km2 during the 1920s, measured by comparing the de-
cadal means of the 1930s and 1910s. Note that this value
should not be compared directly with other datasets unless
land masks are consistently applied. The Brennan and Hakim
(2022) reconstruction of annual means, using only proxy data
with offline DA, agrees closely with our results.

Antarctic sea ice is a unique result compared to existing es-
timates. In stark contrast to the datasets used for CMIP6 Di-
agnostic, Evaluation, and Characterization of Klima (DECK)
and AMIP/CFMIP (Eyring et al. 2016; Webb et al. 2017) and
as boundary conditions in reanalyses (e.g., Slivinski et al.
2019; Hersbach et al. 2020), our reconstruction shows much
less ice loss from the preindustrial to present conditions.
AMIP-II, HadISST1, and HadISST2 are at the edge or out-
side of our likely range for the entire pre-1980 period. Note that
HadISST2 is the ice boundary condition in ERA5 and NOAA
20CRv3 before 1979, and it is used to adjust SST in NOAA
ERSSTv5.

In the early twentieth century, we find a wide envelope of un-
certainty in Antarctic ice area that spans the range over the satel-
lite record until 2022. Our results show a local maximum c. 1910,
consistent with the SH cooling reported by Brönnimann et al.
(2024). We find greater Antarctic ice cover in the early 1960s
compared to the 1980s (Fan et al. 2014), consistent with Goosse
et al. (2024). However, our reconstruction shows a decrease
throughout the 1970s (Fig. S15) in contrast to the sharp drop in ice
extent at the end of the 1970s reported by Goosse et al. (2024).

Early single-channel satellite retrievals from Electrically Scanning
Microwave Radiometer (ESMR) suggest Antarctic ice cover
may have been more extensive in the 1970s (Goosse et al.
2024; Kolbe et al. 2024), though the reliability of ESMR is
debated (Titchner and Rayner 2014; Kolbe et al. 2024). As
evident in the ensemble spreads (Fig. 5l; Fig. S15), the uncer-
tainty before 1980 is substantial, and more work is needed to
constrain Antarctic SIC. The preindustrial-mean ice area
(1850–1900) does not appear clearly different from the satellite-
era range until the ice loss of 2022–23 (Roach and Meier 2024;
Espinosa et al. 2024; Zhang and Li 2023; Fogt et al. 2022; Turner
et al. 2022). Our results for preindustrial ice area are consistent
with Edinburgh and Day (2016)’s analysis of ship records from
the Heroic Age (1897–1917), who found ice expansion in the
Weddell Sea but comparable conditions to 1989–2014 in the
other sectors.

Finally, we consider variability in Southern Ocean SST (zonal
mean 508–708S). We find a large spread in our ensemble before
1950 and a larger disagreement across SST datasets, which persists
from 1850 to 2023. We note two interesting results in Fig. 5h.
First, we find a long-term warming trend from 1910 to 2023, which
is approximately half as large as the 1910–present warming trend
in GMSAT. This is consistent with expectations, since Southern
Ocean warming is muted by upwelling of deep water that has not
yet experienced the global warming signal (Armour et al. 2016).

Second, we find a muted cooling of the Southern Ocean
from 1980 to 2013 and slight warming from 1980 to 2023. The
comparison datasets show 1980–2013 cooling that is mostly
outside of our likely range. In situ observations are still sparse
from 1980 to 2023 (Fig. 1; Fig. S14), and the data sources
change dramatically over that period, possibly introducing
spurious trends from homogenizing different data sources
(Kennedy et al. 2019; Huang et al. 2019; Kent and Kennedy
2021; Hausfather et al. 2017; Karl et al. 2015). We elaborate
on Southern Ocean trends below and in the discussion section.

The Southern Ocean cooling over recent decades is not un-
precedented, given that we find stronger cooling from 1880 to
1910. Brönnimann et al. (2024) report that this cooling is a real
climatic phenomenon, not a data artifact. However, Sippel
et al. (2024) suggest that biases in the bucket measurements
of SST are responsible for a cold bias from 1910 to 1930. If
SST-bucket biases are indeed responsible for this cooling, an
explanation is still required for why the nighttime marine air
temperatures (Cornes et al. 2020) also show the cooling trajec-
tory (Fig. 1 of Sippel et al. 2024).

b. Patterns of SST, SLP, and SIC trends

Figure 6 shows spatial patterns of SST trends separately for
the gradual warming over 1900–79 and the recent period of
1980–2023. We show our reconstruction and its uncertainty
alongside comparison trends from NOAA ERSSTv5 and
COBE-SST2. Despite similar global-mean trends from 1900 to
1979, there are substantial disagreements in the pattern of trends
especially over the Southern Ocean and tropical Pacific. The
post-1980 period is often viewed as having small uncertainty due
to observation density (Fig. 1), but the interdataset disagree-
ments in Figs. 6e–g suggest there are nontrivial uncertainties in
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large-scale SST gradients. The southeast Pacific and Southern
Ocean regions, which have strong impacts on global climate var-
iability and radiative feedbacks (e.g., Dong et al. 2022a; Kang
et al. 2023c,a; Espinosa and Zelinka 2024), have the worst obser-
vation coverage (Fig. 1).

Figure 7 shows spatial patterns of SLP trends over 1900–79
and 1980–2023 from our reconstruction and comparison data-
sets. Note that our reconstruction only assimilates marine SLP
observations, so we expect it to differ from reanalyses over
land regions. From 1900 to 1979, there are many large-scale

differences between our reconstruction, HadSLP2, and NOAA
20CRv3. The comparison datasets show strong negative trends in
SLP over Antarctica and most of the Southern Ocean during
both time periods, whereas we find positive trends over 1900–79.
In this region, regression-based reconstructions find positive
trends in the early twentieth century, also in contrast to the neg-
ative trends in existing reanalyses (Fogt et al. 2019; Fogt and
Connolly 2021; Fogt et al. 2024). Schneider and Fogt (2018) and
Laloyaux et al. (2018) highlight problems with the atmospheric
circulation in the Southern Hemisphere in multiple reanalyses

FIG. 6. Historical patterns of SST trends. (a) Normalized 1900–79 ensemble mean of trends in the annual mean
from data assimilation; local trends are divided by the global-mean trend to show SST patterns; top-right value is the
global-mean trend before normalization, scaled by the number of years to show trend (8C) per 80 years. (b) As in
(a), but showing comparison data from NOAA ERSSTv5 and (c) COBE-SST2. (d) Uncertainty in results from data
assimilation, calculated as the sample standard deviation (1s) across 1600 ensemble members’ normalized trends; val-
ues greater than 1.0 indicate that local 1s is greater than the global-mean trend; top-right value is the global mean of
the 1s in local trends before normalization. (e),(f) As in (a)–(d), but for 1980–2023.
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and how those problems create spurious climate signals. The
key problem identified in ERA-20C is that the assumed error is
too small for pressure observations. This is one reason why we
ensure our SLP observation error is not too small, as described
in appendix B.

Over 1980–2023, our SLP trends over the global oceans
largely align with ERA5, albeit with weaker positive trends in
the central and eastern Pacific (Figs. 7e,f). ERA5 has a sub-
stantial trend in global-mean SLP, which increases by 21.1 Pa
(44 yr)21 from 1980 to 2023, and removing this trend would
improve agreement with our reconstruction in many regions.

NCEP/NCAR has a substantial and opposite trend of 218.7 Pa
(44 yr)21. Our reconstruction has a much smaller 1980–2023 trend
in global-mean SLP of 3.8 Pa (44 yr)21 (Fig. 7e) and similarly
small trends from 1900 to 1979 and also in the pseudoreconstruc-
tion experiment (Fig. 4). Once again, our reconstruction highlights
uncertainty over the Southern Ocean, especially the Amundsen
Sea low and the Atlantic sector.

Figure 8 shows trends in Arctic SIC over 1900–79, during
the early twentieth-century warming from 1920 to 1935, and
for the recent loss from 1980 to 2023. We compare with
HadISST2, which is the presatellite boundary condition used

FIG. 7. Historical trends in SLP. (a) The 1900–79 ensemble mean of trends in the annual mean from data assimila-
tion, scaled by the number of years to show trends (hPa) per 80 years; (top right) the global-mean trend (Pa) per
80 years. (b) As in (a), but showing comparison datasets HadSLP2 and (c) NOAA 20CRv3. (d) Uncertainty in results
from data assimilation, calculated as the sample standard deviation 1s across local trends from 1600 ensemble mem-
bers; (top right) the global mean of the 1s in local trends. (e),(f) As in (a)–(d), but for 1980–2023, with comparison re-
analyses from (f) ERA5 and (g) NCEP/NCAR.
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in ERA5 and NOAA 20CRv3, and with the NOAA/NSIDC
satellite data that we assimilate. From 1900 to 1979, we find
ice loss in the Barents Sea between Svalbard and Russia.
From 1920 to 1935, we find ice loss around most of the Arctic,
partially offset by gains poleward of the Bering Strait.
HadISST2 does not have this 1920–35 ice loss. From 1980 to
2023, our ice loss looks very similar to the satellite record, but
it does not match exactly because of uncertainty in the satel-
lite data, the influence of non-SIC observations, and the par-
ticularities of our LIM and DAmethods.

Figure 9 shows trends in Antarctic SIC over 1900–79, dur-
ing the 1960–79 period of ice loss hypothesized by Fan et al.
(2014), and over 1980–2023, a period with steady but small
growth and then recent rapid loss (e.g., Stuecker et al. 2017).
Our reconstruction of 1900–79 shows some ice loss alongside
the Southern Ocean SST warming, but we find a lesser magni-
tude and a different pattern compared to HadISST2. If
sea ice has a relationship with the atmospheric circulation (e.g.,
Kohyama and Hartmann 2016), the HadISST2 boundary condi-
tion may impact the circulation in ERA5 and NOAA 20CRv3.

FIG. 8. Historical trends in Arctic SIC. (a)–(c) Ensemble mean of trends from data assimilation, scaled by the number of years in each
period to show trends in SIC per N years. (d)–(f) As in (a)–(c), but showing comparison datasets, with infilled HadISST2.2 in (d),(e) and
satellite data from NOAA/NSIDC CDR in (f). (g)–(i) Uncertainty in results from data assimilation, calculated as local standard deviation
1s across 1600 ensemble members, corresponding to time periods in (a)–(c). Note that SIC is bounded from 0 to 1.

J OURNAL OF CL IMATE VOLUME 385476

Brought to you by University of Washington Libraries | Unauthenticated | Downloaded 09/03/25 03:15 PM UTC



From 1960 to 1979, we find ice loss in the Atlantic sector, which
mostly aligns with the pattern in HadISST2 but with a substan-
tially different magnitude. We see a minor gain of ice in the Bel-
lingshausen Sea, where HadISST2 shows large loss.

c. El Niño in 1877

The extreme 1877/78 El Niño, which is the largest event in
the historical record, is an instructive comparison case for in-
filled datasets. Observations are sparse but the signal is large.
Recent reconstructions of hybrid air/sea surface temperature

also focused on this event (Vaccaro et al. 2021; Kadow et al.
2020) to illustrate how different the imputed values can be for
different datasets.

Figure 10 shows the onset of El Niño in July 1877. We show
the ensemble spread in our reconstructed SST and land T, the
observations of SST and station temperatures, and two com-
parison datasets. ERSSTv5 depicts the center of action in the
coastal–eastern Pacific, whereas the central Pacific is most no-
table in HadISST1. Our ensemble mean displays some com-
monalities with each dataset, but we find higher confidence in

FIG. 9. Historical trends in Antarctic SIC. (a)–(c) Ensemble mean of trends from data assimilation, scaled by the number of years in
each period to show trends in SIC per N years. (d)–(f) As in (a)–(c), but showing comparison datasets, with infilled HadISST2.2 in (d),(e)
and satellite data from NOAA/NSIDC CDR in (f). (g)–(i) Uncertainty in results from data assimilation, calculated as local standard devia-
tion 1s across 1600 ensemble members, corresponding to time periods in (a)–(c). Note that SIC is bounded from 0 to 1.
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the east Pacific El Niño (Fig. 10b), and we note that our method
leverages teleconnections with observations of SLP and land
temperatures to constrain the SSTs. Our results also show large
uncertainties in the central Pacific and the coastal–eastern Pacific
(Fig. 10a), i.e., uncertainty in the type of ENSO (e.g., Newman
et al. 2011; Karnauskas 2013; Capotondi et al. 2015). There are

also large differences across datasets in the North Pacific. In
ERSSTv5, the influence of the HadISST2 sea ice is evident
as a ring of cold anomalies around the Southern Ocean.
This results from the expansion of Antarctic sea ice in
HadISST2 (Fig. 5l).

4. Discussion

With strongly coupled DA, we provide a dynamically and
observationally constrained perspective on coupled variability
and trends over the historical record. The results suggest it
may be worth revisiting assessments of forced versus internal
variability and climate-model biases using this internally con-
sistent reconstruction. Many studies have characterized post-
1980 trends, but placing those changes in the context of the
longer record may help disentangle the mechanisms and causes
of both variability and trends. Several large-scale model biases,
including those in the Southern Ocean and the tropics, now ap-
pear less drastic than previously estimated, suggesting climate
models may perform better than indicated by comparison with
earlier datasets (e.g., Wills et al. 2022; Simpson et al. 2025).

a. Tropical trends

The zonal SST gradient and Walker circulation in the tropi-
cal Pacific has been a focus of many discussions of forced ver-
sus internal variability (Vecchi and Soden 2007; DiNezio et al.
2009; Coats and Karnauskas 2017; Kohyama et al. 2017;
Seager et al. 2019; Lee et al. 2022; Kang et al. 2023b; Watanabe
et al. 2024; Jiang et al. 2024). In our results, the 1979–2014
strengthening trend in the Walker circulation (Pacific zonal
SLP gradient) does not appear distinct from variability over the
historical record. The Pacific zonal SST gradient has a more no-
table trend from 1980–present, but it is difficult to convincingly
say that the trend is outside of the range of natural variability.

Over the full twentieth century, we do not find a long-term
weakening of the Walker circulation (Tokinaga et al. 2012;
Vecchi et al. 2006) nor a clear strengthening of the zonal SST
gradient (Coats and Karnauskas 2017; Seager et al. 2022) that
is distinct from past variability. If the recent trend is a forced
response to global warming from CO2 (e.g., Clement et al.
1996; Seager et al. 2019), that trend is not yet distinct from
past variability in the reconstruction.

However, our results indicate that there is a peculiar trend over
1975–present in the strengthening of the SST contrast between
the warmest SSTs and the mean SST over the entire tropics
(SST#; Fueglistaler and Silvers 2021; Zhang and Fueglistaler
2020; Fueglistaler 2019). Fueglistaler and Silvers (2021) ques-
tioned whether the recent trend in SST# could be due to data
artifacts in the SST record or purely coincidence, i.e., a rare
occurrence of variability during the satellite record. Data ar-
tifacts are still a possible influence, but the dynamical constraints
in our method reduce the likelihood of that explanation, es-
pecially considering that the SST is also informed by SLP
observations and station temperatures. Further analysis of
paleoclimate proxy data in the tropics (e.g., Deutsch et al.
2014; Sanchez et al. 2020, 2021) could help assess the role of
possible data artifacts and the range of natural variability in
SST contrasts.

FIG. 10. El Niño in July 1877: reconstruction, observations, and
uncertainty. (a) Contours show uncertainty in the data assimilation,
calculated as the sample standard deviation (1s) across the local
anomalies in SST and near-surface air temperatures (T) over land
for the 1600 ensemble members; scattered dots show anomalies in
SST from HadSST4, with size inversely proportional to error, while
triangles show land T from CRUTEM5; T and SST points use col-
orbar from (b)–(d). (b) Contours show ensemble mean of SST
anomalies and land T from data assimilation, with HadSST4 and
CRUTEM5 observations. (c),(d) As in (b), but with comparison
SST datasets, NOAAERSSTv5 and HadISST1.
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b. Southern Annular Mode

The positive trend in the SAM (c. 1980–present) has been
associated with stratospheric ozone depletion, CO2 forcing,
natural variability, and other factors (Doddridge and Marshall
2017; Polvani et al. 2021; Bitz and Polvani 2012; Seviour et al.
2016; Thomas et al. 2015; Thompson et al. 2011; England
et al. 2016; Fogt and Marshall 2020; Banerjee et al. 2020).
Efforts to determine what has caused the SAM trend have
been complicated by recent results, included in Fig. 5j, depicting
a positive trend over the entire twentieth century (O’Connor
et al. 2021; Dalaiden et al. 2021; King et al. 2023; Slivinski et al.
2019). Our findings, which show no trend from 1925 to 1970 and
then a prolonged positive trend over 1970–present, are con-
sistent with a trend onset that is associated with stratospheric
ozone depletion (Thompson and Solomon 2002; Fogt et al.
2009; Polvani et al. 2011; Thompson et al. 2011). The regres-
sion-based reconstruction of Fogt et al. (2009) is in general
agreement with our results over 1920–70, showing no signifi-
cant SAM trend until a positive trend emerges in DJF
around 1970. We also find that DJF has the strongest SAM
trend over 1970–present (Fig. S16). Another large positive
trend over 1850–1920 warrants further investigation into
possible drivers and the role of data quality, particularly
given the sparse and imperfect SLP observations in the early
record. We note that Brönnimann et al. (2024) also report
positive SAM in the early 1900s in newly digitized ship data,
supporting our results.

c. Southern Ocean cooling

Studies of the post-1980 cooling in the Southern Ocean typ-
ically use SSTs from NOAA ERSST, the latest of which is
version 5 (Huang et al. 2017). Even when nudging a climate
model (CESM1) to ERA reanalysis winds, the model does
not reproduce the Southern Ocean SST cooling from ERSST
(Blanchard-Wrigglesworth et al. 2021; Dong et al. 2022a).
Therefore, it seems that the winds alone cannot explain the
SST cooling over the Southern Ocean (Dong et al. 2023), and
other explanations have been proposed (e.g., Zhang et al.
2019; Haumann et al. 2020; Dong et al. 2022b; Swart et al.
2023; Schmidt et al. 2023).

Pacemaker experiments, which nudge a coupled climate
model’s SST in the Southern Ocean to match an infilled SST
dataset (typically NOAA ERSST), have been used to investi-
gate how SST cooling of the Southern Ocean affects global
climate, radiative feedbacks, and the atmospheric circulation
(Zhang et al. 2021; Kang et al. 2023c,a). The Southern Ocean
cooling has also been proposed as a driver of cooling in the
tropical east Pacific (Dong et al. 2022a), possibly forced by
the ozone hole (Hartmann 2022) or other means (Watanabe
et al. 2024). Kang et al. (2024) leverage the pacemaker experi-
ments, but they also highlight the importance of regional-scale
discrepancies in SST trends for the atmospheric circulation
and uncertainty in post-1979 trends across reanalyses in the
Southern Hemisphere.

In our results, we find much less post-1980 cooling over
the Southern Ocean compared to NOAA ERSSTv5. While
more work is needed before definitive conclusions can be made

about which reconstruction is more accurate, we compare
the noninfilled SST dataset (HadSST4) that we use to in-
form our data assimilation with (i) the noninfilled SST data
from ERSSTv5 and (ii) the Dynamically Consistent Ensemble
of Temperature (DCENT), a recent product that has under-
gone extensive bias corrections (Chan et al. 2024). Addition-
ally, we compare our results with infilled 1980–2023 trends in
other SST datasets.

Figure 11a compares the noninfilled anomalies in the south-
east Pacific sector of the Southern Ocean (latitudes 508–708S
and longitudes 708–1408W). HadSST4 and DCENT show sim-
ilar trajectories, but they have substantial offsets relative to
ERSSTv5. This suggests that not only the infilling but also the
homogenization of time-varying data sources affects trends in

FIG. 11. Recent evolution of Southern Ocean SST: comparing in
situ data and infilled trends in the southeast Pacific sector. Both
panels analyze the mean of values in the region west of the Drake
Passage, spanning latitudes 508–708S and longitudes 708–1408W.
(a) Comparison of noninfilled SST anomalies, illustrating differences
from the homogenization of time-varying in situ sources; for visual
clarity, 5-yr running mean is applied and the 1961–79 mean is re-
moved. (b) Infilled SST trends for 1980–2023 from data assimilation,
with 1600 ensemble members shown as histogram; the distribution is
shaped by the eight distinct model priors. Vertical lines indicate the
mean trend and comparison datasets.

C OO P ER E T A L . 54791 OCTOBER 2025

Brought to you by University of Washington Libraries | Unauthenticated | Downloaded 09/03/25 03:15 PM UTC



this region. Kennedy et al. (2019) show the major transition
from bucket measurements to drifting buoys between 1980
and 2005, and Huang et al. (2019) find substantial differences
in SST analyses from 2000 to 2016 when including drifting
buoys and/or ARGO floats in NOAA ERSSTv5. ERSSTv5
has a detailed bias-correction procedure and consequently
could provide the best estimate in this region. A key point is
that the processing of time-varying data sources could have a
spurious influence on what appear to be climate trends.

Figure 11b shows the distribution of 1980–2023 SST trends
in the southeast Pacific sector of the Southern Ocean (lati-
tudes 508–708S and longitudes 708–1408W). Our reconstruc-
tion shows a wide range of uncertainty, with possible trends
ranging from 20.38 to 0.08C (44 yr)21. Our distribution is
shaped by the uncertainty in bias corrections from HadSST4
and by the eight LIMs used as priors in the assimilation.
COBE-SST2 and HadISST1 are within our uncertainty range,
but ERSSTv5 has a much larger trend of 20.78C (44 yr)21.
Determining which of these trends is correct may be impor-
tant for advancing understanding of the mechanisms driving
Southern Ocean cooling. For example, nudging a climate model’s
winds to reanalysis may not explain the magnitude of cooling in
ERSSTv5, but wind nudging might be sufficient to explain all
of the cooling in our reconstruction. Thus, the result of weaker
cooling in our reconstruction supports the notion that ozone
depletion, through its influence on the SAM and surface winds,
may be a key driver of the observed SST trends (Hartmann
2022). The possibility that our reconstruction is closer to the
true (but unknown) trend motivates revisiting investigations of
Southern Ocean cooling, as well as its impacts on the tropical
Pacific and global climate (e.g., Kang et al. 2023a,c).

d. Radiative feedbacks and historical pattern effects

The pattern effect on climate sensitivity, i.e., the dependence
of radiative feedbacks on spatial patterns of SST and SIC anom-
alies (Armour et al. 2013; Andrews et al. 2015; Zhou et al. 2016;
Ceppi and Gregory 2017; Andrews and Webb 2018; Fueglistaler
2019; Dong et al. 2019, 2020; Cooper et al. 2024), has strong ties
to the incomplete data problem. The pattern effect over the his-
torical record (Andrews et al. 2018, 2022; Marvel et al. 2018;
Salvi et al. 2023; Armour et al. 2024) depends on what the SST
patterns were in the past, and recent studies have revealed that
differences across infilled SST datasets lead to disparate interpre-
tations of the historical pattern effect (Fueglistaler and Silvers
2021; Lewis and Mauritsen 2021), or possibly no pattern effect at
all (Modak andMauritsen 2023).

Uncertainty in sea ice is typically omitted from studies of the
pattern effect, but Andrews et al. (2018; Supporting Information)
found that differences in sea ice between AMIP-II and Ha-
dISST2 change the shortwave clear-sky feedback by approxi-
mately 0.6 W m22 K21. This change from sea ice alone is
approximately the same magnitude as the total pattern effect
over the historical record, as the mean pattern effect is 0.48 W
m22 K21 using HadISST1 (Andrews et al. 2022). Constraining
uncertainty in Antarctic sea ice is important for quantifying
historical pattern effects.

We find many differences in the spatial patterns of SST and
SIC anomalies relative to AMIP-II and HadISST1, which have
been used to account for historical pattern effects and quantify
variability in feedbacks over the historical record (Zhou et al.
2016; Andrews et al. 2018; Marvel et al. 2018; Dong et al. 2019;
Gregory et al. 2020; Sherwood et al. 2020; Lewis and Mauritsen
2021; Andrews et al. 2022; Salvi et al. 2023; Modak andMauritsen
2023). Our reconstruction of monthly SST and SIC can be used
as boundary conditions in atmospheric general circulation models
to examine the implications for historical feedbacks, pattern ef-
fects, and climate sensitivity.

e. Future opportunities and caveats of the method

Future efforts to reconstruct the historical record could im-
prove on our results in a variety of ways, and we list a few pos-
sibilities here:

• LIMs and DA: Future investigations could elaborate on op-
timizing the LIMs, their training data, and possibly consider
machine learning methods (e.g., Meng and Hakim 2024).
Our method uses climate models to train the LIMs and,
therefore, inherits some of the problems in climate models.
We mitigate this effect by using eight different CMIP6 models
to sample the range of systematic uncertainty and through
DA. There are many varieties of DA that could improve on
our results, including 4D-Var, quantile-conserving filtering, or
multimodel Kalman filtering with a large ensemble generated
by various LIMs (Kalnay 2003; Houtekamer and Zhang 2016;
Anderson 2022; Bach and Ghil 2023). Our method assumes
state variables can be approximated with Gaussian distribu-
tions, which appears to work reasonably well even for SIC but
could likely be improved in future studies.

• Pressure data: An update of noninfilled HadSLP2 (Allan and
Ansell 2006) would be helpful, as no quality-controlled dataset
of gridded monthly mean SLP with error estimates is currently
available. ICOADS provides only marine data (Freeman et al.
2017) and does not include observation errors. Including ter-
restrial pressure data (Cram et al. 2015) could improve our
reconstruction, but no gridded product exists, and elevation
differences are a considerable source of error.

• Sea ice: There are many observations available before the
satellite era (e.g., Walsh et al. 2019; Edinburgh and Day 2016;
Titchner and Rayner 2014), but we do not have a data compi-
lation in a format that can be used in reconstructions. A data-
set structured like HadSST4 or DCENT but with historical
SIC observations would be helpful.

• SST: Ongoing efforts to digitize new data, quantify error,
and correct the biases of existing data will continue to be
critical (e.g., Brönnimann et al. 2019, 2024; Chan et al.
2019, 2023; Kent and Kennedy 2021; Kennedy et al. 2019).
For SST anomalies (also T and SLP), it would be helpful to
use a climatological period that overlaps with satellite ob-
servations of SIC (i.e., post-1979).

5. Conclusions

The historical record is essential to our understanding of
coupled climate dynamics and variability, but instrumental
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observations are sparse and noisy. Moreover, existing obser-
vational datasets are typically derived separately for each
component of the climate system, leading to inconsistencies in
coupled variability when they are combined.

In this study, we develop a method for climate reanalysis
using strongly coupled data assimilation. The key advance of
our method compared to past work is that we (i) ensure that
the coupled atmosphere–ocean–ice state is internally consistent
and (ii) synthesize observational and dynamical constraints
across all components simultaneously. Using a Kalman filter, we
combine monthly forecasts from linear inverse models (LIMs),
which are trained on eight CMIP6 models to account for model
error, with observations of SST, land temperature, marine sea
level pressure, and satellite-era sea ice concentration.

We first validate the method through pseudoreconstruction
of an out-of-sample climate model, and then we present the
actual reconstruction on a global 28 3 28 grid with monthly
resolution of SST, near-surface air temperature, sea level
pressure, and sea ice concentration over 1850–2023. We also
provide a novel quantification of the time-varying uncertainty
in all fields and its spatial distribution.

In many ways, our results differ from comparison datasets
regarding how recent trends (c. 1980–present) compare to
past variability. The recent evolution of the Walker circula-
tion appears consistent with past variability, but the SST con-
trast (SST#; warmest regions vs the tropical mean) exhibits a
prolonged strengthening from 1975 to the present that ap-
pears distinct from past variability.

In the Southern Ocean, we find a weaker SST cooling post-
1980 compared to the strong cooling in other estimates (viz.,
ERSSTv5), which climate models have been unable to replicate.
We emphasize the observational uncertainty over the Southern
Ocean, which merits more attention due to sparse and problem-
atic data even after 1980. The Southern Annular Mode appears
well constrained but differs substantially from existing estimates
before 1980. Antarctic sea ice also follows a different trajectory in
our reconstruction compared to other estimates over the majority
of the record (1850–1980). Our constraints on Antarctic sea ice
are a key result, as we find much less ice loss over 1900–80 com-
pared to existing datasets, but with large uncertainty.

Our historical reconstruction is designed for climate analy-
sis and is publicly available. We provide the grand mean of all
1600 ensemble members, the separate ensemble means for
each of the eight model priors, and a subset of 200 fully
gridded ensemble members. Our monthly SST and sea ice can
also be used as boundary conditions in atmospheric general
circulation modelsfor AMIP-type simulations. Through
strongly coupled data assimilation, this reconstruction im-
proves constraints on coupled climate dynamics and variabil-
ity, highlights key uncertainties in the historical record, and
guides future investigations into coupled atmosphere–ocean–
ice interactions.
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APPENDIX A

Summary of LIM Training Data

Table A1 summarizes the training data for the eight
LIMs.

APPENDIX B

Observation Error for Sea Level Pressure

To estimate R for observations of monthly mean SLP, we
apply a method similar to that in Kaplan et al. (2000). The
intramonth standard deviation s provided by ICOADS is
comprised of submonthly variability, measurement error,
and representativeness error, thus providing an estimate of
the observation error in the monthly mean (Leith 1973).
We take the local time average of s2[nobs/(nobs 2 1)] over
the well-observed period 1961–2023 to estimate the climato-
logical error variance s2 in the monthly mean for each grid
cell, and we restrict the estimate to grid cells with nobs . 30
in a given month. Again using a similar approach to Kaplan
et al. (2000), we then spatially smooth the resulting climato-
logical maps of s using a running-mean window of 128 lati-
tude 3 508 longitude equatorward of 528N/S and a window
of 188 latitude 3 1008 longitude poleward of 528N/S. This
results in 12 monthly 28 3 28 fields of the random measure-
ment and sampling error, srandom.

We then must assign a time-varying error s to each
monthly value of SLP. We start with the random error de-
scribed above and then reduce the random error by the
number of intramonth observations in a grid cell. To account
for autocovariance and possible sampling errors even when
nobs is large, we reduce nobs to nadjusted 5 nobs/2, and we set
the maximum of nadjusted at 30 (Leith 1973; Bretherton et al.
1999). We then consider the systematic component of the to-
tal error, s2 5 s2

systematic 1 s2
random/nadjusted, as discussed in

Kennedy (2014). We estimate s2
systematic from the variance

across neighboring observations. The idea is that if neighbor-
ing observations consistently differ, the differences are from
irreducible, systematic errors. Separately for each month
from 1961 to 2023, we calculate the spatial variance across a
running-mean window of 168 latitude 3 328 longitude, re-
stricting the calculation to grid cells with nobs $ 5. We use
the zonal mean of the climatology of this field to represent

s2
systematic. We make one adjustment by setting the minimum

ssystematic at 6 hPa south of 728S, preventing the error from
decreasing near the Antarctic coastline. The systematic error
ranges from approximately 1 hPa on the equator to 7 hPa in
polar regions, with a local maximum of 9.5 hPa over the
Southern Ocean at 558S.
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Bonan, D. B., J. Dörr, R. C. J. Wills, A. F. Thompson, and
M. Årthun, 2024: Sources of low-frequency variability in ob-
served Antarctic sea ice. Cryosphere, 18, 2141–2159, https://
doi.org/10.5194/tc-18-2141-2024.

Brennan, M. K., and G. J. Hakim, 2022: Reconstructing Arctic
sea ice over the Common Era using data assimilation. J. Cli-
mate, 35, 1231–1247, https://doi.org/10.1175/JCLI-D-21-0099.1.

}}, }}, and E. Blanchard-Wrigglesworth, 2023: Monthly Arctic
sea-ice prediction with a Linear Inverse Model. Geophys. Res.
Lett., 50, e2022GL101656, https://doi.org/10.1029/2022GL101656.

Bretherton, C. S., M. Widmann, V. P. Dymnikov, J. M. Wallace,
and I. Bladé, 1999: The effective number of spatial degrees
of freedom of a time-varying field. J. Climate, 12, 1990–2009,
https://doi.org/10.1175/1520-0442(1999)012,1990:TENOSD.2.
0.CO;2.
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